Advertisement

CEAS Aeronautical Journal

, Volume 6, Issue 4, pp 497–514 | Cite as

Flap efficiency analysis for the SAGITTA diamond wing demonstrator configuration

  • A. HövelmannEmail author
  • S. Pfnür
  • C. Breitsamter
Original Paper

Abstract

The efficiency of deflected midboard flaps is investigated on a diamond wing-shaped unmanned aerial vehicle, the SAGITTA demonstrator configuration. The Reynolds-Averaged Navier-Stokes equations are applied to compute numerical results for a variety of flight conditions with varying angle of attack, sideslip angle, and midboard flap deflection. Low-speed wind tunnel conditions are regarded to compare the results to existing experimental data. The focus is particularly laid on the analysis of the aerodynamic coefficients and derivatives in both the longitudinal and the lateral motion. The occurring flow phenomena are motivated and discussed by flow field illustrations that are available from the numerical computations. The results show at small to moderate angles of attack linear flap characteristics, since the overall flow field is dominated by attached flow. With increasing angle of attack and additional sideslip angle, however, the leading-edge vortex originating from the inboard sharp leading edge and the wing tip separation region affect the midboard flap efficiency. Non-linear coupling effects become obvious, which particularly affect the roll and pitch control effectiveness.

Keywords

Applied aerodynamics CFD Wind tunnel experiments  Vortex flow Trailing-edge controls Diamond wing UAV 

List of symbols

b

Wing span, [m]

\(C_{D}\)

Drag coefficient, \(C_{D} = \frac{D}{q_{\infty } \cdot S_{Ref}}\)

\(C_{L}\)

Lift coefficient, \(C_{L} = \frac{L}{q_{\infty } \cdot S_{Ref}}\)

\(C_{Y}\)

Side force coefficient, \(C_{Y} = \frac{Y}{q_{\infty } \cdot S_{Ref}}\)

\(C_{mx}\)

Rolling moment coefficient, \(C_{mx} = \frac{M_{x}}{q_{\infty } \cdot S_{Ref} \cdot s }\)

\(C_{my}\)

Pitching moment coefficient, \(C_{my} = \frac{M_{y}}{q_{\infty } \cdot S_{Ref} \cdot l_{\mu } }\)

\(C_{mz}\)

Yawing moment coefficient, \(C_{mz} = \frac{M_{z}}{q_{\infty } \cdot S_{Ref} \cdot s }\)

c

Wing chord, [m]

\(c_{p}\)

Pressure coefficient, \(c_{p} = \frac{p-p_{\infty }}{q_{\infty }}\)

D

Drag (wind-axis COS), [N]

g

Prism layer stretching factor

\(h_{1}\)

Initial prism layer thickness, [m]

L

Lift (wind-axis COS), [N]

\(l_{\mu }\)

Mean aerodynamic chord, [m]

\(M_{x}\)

Rolling moment (body-fixed COS), [Nm]

\(M_{y}\)

Pitching moment (body-fixed COS), [Nm]

\(M_{z}\)

Yawing moment (body-fixed COS), [Nm]

Ma

Mach number

p

Static pressure, [N/m2]

\(p_{\infty }\)

Free stream static pressure, [N/m2]

\(q_{\infty }\)

Free stream dynamic pressure, [N/m2], \(q_{\infty } = \frac{\rho _{\infty }\cdot U_{\infty }^2}{2}\)

Re

Reynolds number

\(r_{N}\)

Leading-edge radius, [m]

\(S_{Ref}\)

Wing reference area, [m2]

s

Semi wing span, [m]

\(U_{\infty }\)

Free stream velocity, [m/s]

u

Axial velocity, [m/s]

xyz

Cartesian coordinates, [m]

Y

Side force (wind-axis COS), [N]

\(y^{+}\)

Dimensionless wall distance

\(\alpha\)

Angle of attack, [deg]

\(\beta\)

Angle of sideslip, [deg]

\(\Lambda\)

Wing aspect ratio

\(\lambda\)

Wing taper ratio

\(\xi\)

Midboard flap deflection angle, [deg], \(\xi = \frac{\xi _{R}-\xi _{L}}{2}\)

\(\rho _{\infty }\)

Free stream density, [kg/m\(^{3}\)]

\(\varphi\)

Wing sweep angle, [deg]

Subscripts

L

Left

LE

Leading edge

MRP

Moment reference point

R

Right

r

Root chord

TE

Trailing edge

t

Tip chord

Notes

Acknowledgments

The support of this investigation by Airbus Defence and Space within the SAGITTA demonstrator program is gratefully acknowledged. Furthermore, the authors thank the German Aerospace Center (DLR) for providing the DLR TAU-Code used for the numerical investigations. The support of CENTAURSoft for its guidance during the grid generation process is also highly appreciated. Moreover, the authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (http://www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC at the Leibniz Supercomputing Centre (LRZ, http://www.lrz.de).

References

  1. 1.
    Schütte, A., Hummel, D., Hitzel, S.M.: Flow physics analyses of a generic unmanned combat aerial vehicle configuration. J Aircr 49(6), 1638–1651 (2012)CrossRefGoogle Scholar
  2. 2.
    Colgren, R., Loschke, R.: Effective design of highly maneuverable tailless aircraft. J Aircr 45(4), 1441–1449 (2008)CrossRefGoogle Scholar
  3. 3.
    Stenfelt, G., Ringertz, U.: Lateral stability and control of a tailless aircraft configuration. J Aircr 46(6), 2161–2164 (2009)CrossRefGoogle Scholar
  4. 4.
    Schütte, A., Einarsson, G., Raichle, A., Schöning, B., Mönnich, W.: Numerical simulation of maneuvering aircraft by aerodynamic, flight-mechanics, and structural-mechanics coupling. J Aircr 46(1), 53–64 (2009)CrossRefGoogle Scholar
  5. 5.
    Schütte, A., Huber, K., Boelens, O.: Static and dynamic numerical simulations of a generic UCAV configuration with and without control devices. In: 32nd AIAA Applied Aerodynamics Conference, Atlanta (GA), United States, No. 2132 in AIAA (2014)Google Scholar
  6. 6.
    Seifert, J.: SAGITTA—Nationale Forschungskooperation für fortschrittliche UAV-Technologien im Rahmen der Open Innovation Initiative von Cassidian. In: 61st Deutscher Luft- und Raumfahrtkongress, Berlin, Germany, No. 1352 in DLRK (2012)Google Scholar
  7. 7.
    Hövelmann, A., Breitsamter, C.: Aerodynamic characteristics of the SAGITTA diamond wing demonstrator configuration. In: 61st Deutscher Luft- und Raumfahrtkongress, Berlin, Germany, No. 1220 in DLRK (2012)Google Scholar
  8. 8.
    Geiser, M., Heller, M.: Flight dynamics analysis and basic stabilization study in early design stages of the SAGITTA demonstrator UAV. In: 61st Deutscher Luft- und Raumfahrtkongress, Berlin, Germany, No. 1329 in DLRK (2012)Google Scholar
  9. 9.
    Özger, E.: Aerodynamic model validation of unmanned research demonstrator SAGITTA. In: 61st Deutscher Luft- und Raumfahrtkongress, Berlin, Germany, No. 1253 in DLRK (2012)Google Scholar
  10. 10.
    Hövelmann, A., Breitsamter, C.: Leading-edge geometry effects on the vortex formation of a diamond-wing configuration. J Aircr (2015), http://arc.aiaa.org/doi/abs/10.2514/1.C033014. Accessed 26 May 2015
  11. 11.
    Gerhold, T.: Overview of the hybrid RANS code TAU. In: MEGAFLOW— Numerical Flow Simulation for Aircraft Design, vol. 89 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 81–92, Springer Verlag (2005)Google Scholar
  12. 12.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: recent applications in research and industry. In: 4th European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006), Egmond aan Zee, The Netherlands (2006)Google Scholar
  13. 13.
    Fritz, W., Davis, M.B., Karman, S.L., Michal, T.: Reynolds-Averaged Navier-Stokes solutions for the CAWAPI F-16XL using different hybrid grids. J Aircr 46(2), 409–422 (2009)CrossRefGoogle Scholar
  14. 14.
    Schütte, A., Boelens, O.J., Oehlke, M., Jirásek, A., Löser, T.: Prediction of the flow around the X-31 aircraft using three different CFD methods. Aerosp Sci Technol 20(1), 21–37 (2012)CrossRefGoogle Scholar
  15. 15.
    Schütte, A., Lüdeke, H.: Numerical investigations on the VFE-2 65-degree rounded leading edge delta wing using the unstructured DLR TAU-Code. Aerosp Sci Technol 24(1), 56–65 (2013)CrossRefGoogle Scholar
  16. 16.
    Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the euler equations by finite volume methods using runge-kutta time-stepping schemes. In: 14th AIAA Fluid and Plasma Dynamics Conference, Palo Alto (CA), United States, No. 1259 in AIAA (1981)Google Scholar
  17. 17.
    Turkel, E.: Improving the accuracy of central difference schemes. NASA CR 181712, (1988)Google Scholar
  18. 18.
    Jameson, A., Yoon, S.: Lower-upper implicit schemes with multiple grids for the euler equations. AIAA J 25(7), 929–935 (1987)CrossRefGoogle Scholar
  19. 19.
    Jameson, A., Yoon, S.: Multigrid solution of the euler equations using implicit schemes. AIAA J 24(11), 1737–1743 (1986)CrossRefGoogle Scholar
  20. 20.
    Spalart, P. R., Allmaras, S. R.: One-equation turbulence model for aerodynamic flow. In: 30th AIAA Aerospace Sciences Meeting & Exhibit, Reno (NV), United States, No. 439 in AIAA (1992)Google Scholar
  21. 21.
    Allmaras, S. R., Johnson, F. T., Spalart, P. R.: Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model. In: 7th International Conference on Computational Fluid Dynamics (ICCFD7), Big Island (HI), United States (2012)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2015

Authors and Affiliations

  1. 1.Institute of Aerodynamics and Fluid MechanicsTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations