CEAS Aeronautical Journal

, Volume 6, Issue 1, pp 83–93 | Cite as

Alternative fuels in aviation

  • Marina Braun-Unkhoff
  • Uwe Riedel
Original Paper


During the last years, the aviation sector has been looking into alternatives to kerosene from crude oil, to combat climate change by reduction of greenhouse gas (GHG) emissions and to ensure security of supply at affordable prices. The efforts are also a reaction to commitments and policy packages. Currently, a wide range of possible fuel candidates and fuel blends are discussed in the triple feedstock, process, and product. Any (synthetic) aviation fuel must be certified; hence, a profound knowledge on its properties, in particular thermophysical and chemical, is inevitable. In the present paper, an overview is given on alternative jet fuels, looking into the short-term and long-term perspective. Examples focusing on experimental and modeling work of combustion properties of existing—coal to liquid, gas to liquid (GtL)—and possible alternative fuels—GtL + 20 % 1-hexanol, GtL + 50 % naphthenic cut—are presented. Ignition delay times and laminar flame speeds were measured for different alternative aviation fuels over a range of temperatures, pressures, and fuel–air ratios. The data are used for the validation of a detailed chemical reaction mechanism following the concept of a surrogate. Such validated reaction models able to describe and to predict reliably important combustion properties of jet fuels are needed to further promote the development of even more sophisticated jet engines and to optimize synthetic jet fuel mixtures in practical combustors.


Alternative aviation fuels Combustion Reaction mechanism Ignition Laminar flame speed 



The financial support of the European Commission (ALFA-BIRD [15], SWAFEA [16]), the BMWi—Federal Ministry for Economic Affairs and Energy, Germany (burn-FAIR) [18], and of the Qatar Science and Technology Park (QSTP 19]) as well as the contribution from the project partners is gratefully acknowledged. The authors thank P. Le Clercq for fruitful discussions, J. Herzler and C. Naumann for their investigations on ignition delay times, Th. Kick and T. Kathrotia for their work on burning velocities, and C. Wahl and M. Kapernaum for their analysis of the fuel compositions.


  1. 1.
    US Energy Information Administration (EIA). In: The International Energy Outlook, Washington, DC (USA). (2011)
  2. 2.
    Dagaut, P., Cathonnet, M.: The ignition, oxidation, and combustion of kerosene: a review of experimental and kinetic modeling. Prog. Energ. Combust. 32, 48–92 (2006)CrossRefGoogle Scholar
  3. 3.
    Hileman, J.I., Stratton, R.W., Donohoo, P.E.: Energy content and alternative jet fuel viability. J. Propul. Power 26, 184–195 (2010)Google Scholar
  4. 4.
  5. 5.
    International Air Transport Association (IATA). (2011)
  6. 6.
    Intergovernmental Panel on Climate Change (IPPC), Fourth Assessment Report, “Climate Change 2007: Mitigation of Climate Change”. (2007)
  7. 7.
    Advisory Council on Aeronautics Research in Europe (ACARE), “Addendum to the strategic research agenda”. (2008)
  8. 8.
    Steele P., on behalf of ACI, CANSO, ICAO GIACC/3 IATA, ICCAIA, Montreal (Canada). (2009)
  9. 9.
    IEA World Energy Outlook, OECD/IEA, Paris (France). (2011)
  10. 10.
  11. 11.
  12. 12.
    Beginner‘s Guide to Aviation Biofuels, air transport group (ATAG). (2009)
  13. 13.
  14. 14.
  15. 15.
    ALFA-BIRD: Alternative Fuels and Biofuels for Aircraft, EUFP7/2007-2013, grant agreement no 213266.
  16. 16.
    SWAFEA: Sustainable Way for Alternative Fuels and Energy for Aviation, EU, DG-TREN, final report.
  17. 17.
    ASTM Standard D1655, Standard Specification for Aviation Turbine Fuels.
  18. 18.
  19. 19.
  20. 20.
    Specification for Aviation Turbine Fuel (Jet A1), Def Stan 91-91 Issue 6 Amendment 1 (UK).
  21. 21.
    Braun-Unkhoff, M., Le Clercq, P., Aigner, M.: Alternative fuels and biofuels for aircraft development. In: Proceedings of 17th European Biomass Conference and Exhibition, Hamburg, Germany (2009)Google Scholar
  22. 22.
    Kick, Th, Herbst, J., Kathrotia, T., Marquetand, J., Braun-Unkhoff, M., Naumann, C., Riedel, U.: An experimental and modeling study of burning velocities of possible future synthetic jet fuels. Energy 43(1), 111–123 (2012)CrossRefGoogle Scholar
  23. 23.
    Blakey, S., Rye, L., Wilson, C.W.: Aviation gas turbine alternative fuels: a review. Proc. Combust. Inst. 33, 2863–2885 (2011)CrossRefGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
    Moses, C.A., Roets, P.N.J.: An experimental and modelling study on the auto ignition of kerosene and surrogate fuel mixture. GT2008-50545. In: Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, Berlin (Germany) (2008)Google Scholar
  27. 27.
  28. 28.
    Wahl, C.: DLR, Institute of Combustion Technology, Stuttgart, GermanyGoogle Scholar
  29. 29.
    Steil, U., Braun-Unkhoff, M., Frank, P., Aigner, M.: An experimental and modelling study on the auto ignition of kerosene and surrogate fuel mixture. AIAA-2008-0973. In: Proceedings of 46th AIAA Aerospace Sciences Meeting and Exhibition (2008)Google Scholar
  30. 30.
    Beyersdorf, A., Anderson, B.: Proceedings of 2nd International Conference on Transport, Atmosphere and Climate (TAC-2), Aachen, Germany, and Maastricht, The Netherlands, 22–25 June 2009Google Scholar
  31. 31.
    Srinivasan, A., Ellis, B., Crittenden, J.F., Lear, W.E., Rotavera, B., Petersen, E.L.: Fischer–Tropsch fuel characterization via microturbine testing and fundamental combustion measurements. GT2008-51477. In: Proceedings of ASME Turbo Expo 2008, Berlin (Germany) (2008)Google Scholar
  32. 32.
    DLR, Institute of Combustion Technology, ILA, Berlin air show, Berlin (Germany) (2010)Google Scholar
  33. 33.
    Dagaut, P.: On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel. Phys. Chem. Chem. Phys. 4, 2079–2094 (2002)CrossRefGoogle Scholar
  34. 34.
    Kick, T.H., Kathrotia, T., Braun-Unkhoff, M., Riedel, U.: An experimental and modeling study of laminar flame speeds of alternative aviation fuels. GT2011-45606. In: Proceedings of ASME Turbo Expo 2011, Vancouver (Canada) (2011)Google Scholar
  35. 35.
    Kick, T.H., Kathrotia, T., Braun-Unkhoff, M., Herbst, J., Naumann, C., Riedel, U.: An investigation of laminar flame speeds of alternative aviation fuel: an experimental and modeling study. In: Proceedings of 5th European Combustion Meeting, paper no. 269 (2011)Google Scholar
  36. 36.
    Braun-Unkhoff, M., Herbst, J., Herzler, J., Kathrotia, T., Kick, T.H., Naumann, C., Riedel, U.: Alternative fuels in aviation. In: Proceedings of 20th European Biomass Conference, Milan (Italy), pp. 1557–1564 (2012)Google Scholar
  37. 37.
    Slavinskaya, N., Zizin, A., Aigner, M.: On surrogate fuel formulation. GT2009-60012. In: Proceedings of ASME Turbo Expo 2009, Orlando (USA) (2009)Google Scholar
  38. 38.
    Slavinskaya, N.: Skeletal mechanism for kerosene combustion with PAH production. In: Proceedings of 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno (USA), Paper no. 0992 (2008)Google Scholar
  39. 39.
    Slavinskaya, N., Riedel, U., Saibov, E., Kunnaiyan, K.: Surrogate model design for GTL kerosene. In: Proceedings of 50th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 Jan 2012, Nashville (USA) (2012)Google Scholar
  40. 40.
    Vukadinovic, V., Habisreuther, P., Zarzalis, N.: Experimental study on combustion characteristics of conventional and alternative liquid fuels. GT2012-69449. In: Proceedings of ASME Turbo Expo, Copenhagen (Denmark) (2012)Google Scholar
  41. 41.
    Wahl, C., Kapernaum, M., Rindlisbacher, T., Hjelmberg, L.: Comparison of nanoparticle formation caused by leaded and unleaded aviation gasoline combustion. In: 11th ETH-Conference on Combustion Generated Nanoparticles (Switzerland), 13–15 Aug 2007Google Scholar
  42. 42.
    Wahl, C., Aigner, M.: Aircraft gas turbine soot emission tests under technical relevant conditions in an altitude test facility. GT2003-38797. In: Proceedings of ASME Turbo Expo 2003, Atlanta, (USA) (2003)Google Scholar
  43. 43.
    Le Clercq, P., Aigner, M.: Impact of alternative fuels physical properties on combustor performance. ICLASS 2009. In: 11th Triennial International Annual Conference on Liquid Atomization and Spray Systems, Vail, Colorado (USA) (2009)Google Scholar
  44. 44.
    Mzé Ahmed, A., Dagaut, P., Hadj-Ali, K., Dayma, G., Kick, Th, Herbst, J., Kathrotia, T., Braun-Unkhoff, M., Herzler, J., Naumann, C., Riedel, U.: The oxidation of a coal-to-liquid synthetic jet fuel: experimental and chemical kinetic modeling study. Energy Fuels 26(10), 6070–6079 (2012)CrossRefGoogle Scholar
  45. 45.
    Dagaut, P., Karsenty, F., Dayma, G., Diévart, P., Hadj-Ali, K., Mzé-Ahmed, A., Braun-Unkhoff, M., Herzler, J., Kathrotia, T., Kick, Th, Naumann, C., Riedel, U., Thomas, L.: Experimental and detailed kinetic model for the oxidation of a gas to liquid (GtL) jet fuel. Combust. Flame 161(3), 835–847 (2014)CrossRefGoogle Scholar
  46. 46.
    Mze-Ahmed, A., Hadj-Ali, K., Dievart, P., Dagaut, P.: Kinetics of oxidation of a synthetic jet fuel in a jet-stirred reactor: experimental and modeling study. Energy Fuel 24, 4904–4911 (2010)CrossRefGoogle Scholar
  47. 47.
    Wahl, C., Kapernaum, M., Lützow, M.: ALFA-BIRD—DLR Stuttgart (2010)Google Scholar
  48. 48.
    Herzler, J., Naumann, C.: Shock-tube study of the ignition of methane/ethane/hydrogen mixtures with hydrogen contents from 0 % to 100 % at different pressures. Proc. Combust. Inst. 32, 213–220 (2009)CrossRefGoogle Scholar
  49. 49.
    Lefebvre, H. (ed.): Gas turbine combustion, 2nd edn. Taylor and Francis, ISBN 1-56032-675-5Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2014

Authors and Affiliations

  1. 1.Institute of Combustion TechnologyGerman Aerospace Center (DLR)StuttgartGermany

Personalised recommendations