CEAS Aeronautical Journal

, Volume 4, Issue 4, pp 421–432 | Cite as

A practical biodynamic feedthrough model for helicopters

  • Joost Venrooij
  • Marilena D. Pavel
  • Max Mulder
  • Frans C. T. van der Helm
  • Heinrich H. Bülthoff
Original Paper


Biodynamic feedthrough (BDFT) occurs when vehicle accelerations feed through the pilot’s body and cause involuntary motions of limbs, resulting in involuntary control inputs. BDFT can severely reduce ride comfort, control accuracy and, above all, safety during the operation of rotorcraft. Furthermore, BDFT can cause and sustain rotorcraft-pilot couplings. Despite many different studies conducted in past decades—both within and outside of the rotorcraft community—BDFT is still a poorly understood phenomenon. The complexities involved in BDFT have kept researchers and manufacturers in the rotorcraft domain from developing robust ways of dealing with its effects. A practical BDFT pilot model, describing the amount of involuntary control inputs as a function of accelerations, could pave the way to account for adverse BDFT effects. In the current paper, such a model is proposed. Its structure is based on the model proposed by Mayo (15th European Rotorcraft Forum, Amsterdam, pp. 81-001–81-012 1989), and its accuracy and usability are improved by incorporating insights from recently obtained experimental data. An evaluation of the model performance shows that the model describes the measured data well and that it provides a considerable improvement to the original Mayo model. Furthermore, the results indicate that the neuromuscular dynamics have an important influence on the BDFT model parameters.


Biodynamic feedthrough (BDFT) Rotorcraft-pilot-couplings (RPC) Neuromuscular dynamics Pilot-assisted-oscillations (PAO) 



Marilena D. Pavel was supported by the ARISTOTEL project (European Community’s 7th Framework Programme, grant agreement no ACPO-GA-2010-266073). Heinrich H. Bülthoff was supported by the WCU (World Class University) program funded by the Ministry of Education, Science and Technology through the National Research Foundation of Korea (R31-10008) and the myCopter project (European Community’s 7th Framework Programme, grant agreement no 266470).


  1. 1.
    Abbink, D.A.: Neuromuscular analysis of haptic gas pedal feedback during car following. Ph.D. thesis, TU Delft (2006)Google Scholar
  2. 2.
    Banerjee, D., Jordan, L.M., Rosen, M.J.: Modeling the effects of inertial reactions on occupants of moving power wheelchairs. In: Rehabilitation Engineering and Assistive Technology Society. of North America Conference (RESNA), Salt Lake City (1996)Google Scholar
  3. 3.
    Dieterich, O., Götz, J., DangVu, B., Haverdings, H., Masarati, P., Pavel, M.D., Jump, M., Gennaretti, M.: Adverse rotorcraft-pilot coupling: Recent research activities in europe. In: 34th European Rotorcraft Forum, Liverpool (2008)Google Scholar
  4. 4.
    Gabel, R., Wilson, G.J.: Test approaches to external sling load instabilities. J. Am. Helicopter Soc. 13(3), 44–54 (1968). doi: 10.4050/JAHS.13.44 Google Scholar
  5. 5.
    Hess, R.A.: Theory for roll-ratchet phenomenon in high-performance aircraft. J. Guidance Contr. Dyn. 21(1), 101–108 (1998) .doi: 10.2514/2.4203 CrossRefGoogle Scholar
  6. 6.
    Humphreys, H., Book, W., Huggins, J.: Compensation for biodynamic feedthrough in backhoe operation by cab vibration control. In: IEEE International Conference on Robotics and Automation, pp. 4284–4290 (2011). doi: 10.1109/ICRA.2011.59798081
  7. 7.
    Jex, H.R., Magdaleno, R.E.: Biomechanical models for vibration feedthrough to hands and head for a semisuspine pilot. Aviat. Space Environ. Med. 49(1), 304–316 (1978)Google Scholar
  8. 8.
    Lee, B.P., Rodchenko, V.V., Zaichik, L.E., Yashin, Y.P.: Simulation-to-flight correlation. In: AIAA modeling and simulation technologies Conference, Austin (2003)Google Scholar
  9. 9.
    Maddan, S., Walker, J.T., Miller, J.M.: Does size really matter? A reexamination of sheldon’s somatotypes and criminal behavior. Soc. Sci. J. 45, 330–344 (2008). doi: 10.1016/j.soscij.2008.03.009 CrossRefGoogle Scholar
  10. 10.
    Maddan, S., Walker, J.T., Miller, J.M.: The BMI as a somatotypic measure of physique: a rejoinder to Jeremey E.C. Genovese. Soc. Sci. J. 46, 394–401 (2009) . doi: 10.1016/j.soscij.2009.04.006 CrossRefGoogle Scholar
  11. 11.
    Masarati, P., Quaranta, G., Gennaretti, M., Serafini, J.: Aeroservoelastic analysis of rotorcraftpilot coupling: a parametric study. In: AHS 2010 American Helicopter Society 66th Annual Forum, Phoenix (2010)Google Scholar
  12. 12.
    Masarati, P., Quaranta, G., Jump, M.: Experimental and numerical helicopter pilot characterization for aeroelastic rotorcraftpilot couplings analysis. Proc. Inst. Mech. Eng. Part G J. Aerospace Eng. (2011). doi: 10.1177/0954410011427662
  13. 13.
    Masarati, P., Quaranta, G.L.L., Jump, M.: Theoretical and experimental investigation of aeroelastic rotorcraft-pilot coupling. In: AHS 2012 American Helicopter Society 68th Annual Forum, Forth Worth (2012)Google Scholar
  14. 14.
    Masarati, P., Quaranta, G., Serafini, J., Gennaretti, M.: Numerical investigation of aeroservoelastic rotorcraft-pilot coupling. In: AIDAA 2008 XIX Congresso Nazionale AIDAA, Forlì (2007)Google Scholar
  15. 15.
    Mattaboni, M., Fumagalli, A., Jump, M., Masarati, P., Quaranta, G.: Biomechanical pilot properties identification by inverse kinematics/inverse dynamics multibody analysis. In: ICAS 2008, 26th Congress of the Int. Council of the Aeronautical Sciences, Anchorage (2008)Google Scholar
  16. 16.
    Mayo, J.R.: The involuntary participation of a human pilot in a helicopter collective control loop. In: 15th European Rotorcraft Forum, Amsterdam, pp. 81-001–81-012 (1989)Google Scholar
  17. 17.
    McLeod, R.W., Griffin, M.J.: Review of the effects of translational whole-body vibration on continuous manual control performance. J. Sound Vibr. 133(1), 55–115 (1989). doi: 10.1016/0022-460X(89)90985-1 CrossRefGoogle Scholar
  18. 18.
    Mitchell, D., Hoh, R., Adolph, A.J., Key, D.: Ground based simulation evaluation of the effects of time delays and motion on rotorcraft handling qualities. Tech. Rep. USAAVSCOM TR 91-A-010, AD-A256 921 (1992)Google Scholar
  19. 19.
    Pavel, M.D.: A retrospective survey of adverse rotorcraft pilot couplings in european perspective. In: AHS 2012 American Helicopter Society 68th Annual Forum, Forth Worth (2012)Google Scholar
  20. 20.
    Pavel, M.D., Malecki, J., DangVu, B., Masarati, P., Gennaretti, M., Jump, M., Jones, M., Smaili, H., Ionita, A., Zaicek, L.: Present and future trends in rotorcraft pilot couplings (RPCs): a retrospective survey of recent research activities within the european project ARISTOTEL. In: 2011 37th European Rotorcraft Forum (GA) llarate, pp. 275–293 (2011)Google Scholar
  21. 21.
    Quaranta, G., Masarati, P., Venrooij, J.: Robust stability analysis: a tool to assess the impact of biodynamic feedthrough on rotorcraft. In: AHS 2012 American Helicopter Society 68th Annual Forum, Forth Worth (2012)Google Scholar
  22. 22.
    Raney, D.L., Jackson, E.B., Buttrill, C.S., Adams, W.M.: The impact of structural vibrations on flying qualities of a supersonic transport. In: AIAA Atmospheric Flight Mechanics Conference, Montreal (2001)Google Scholar
  23. 23.
    Rodchenko, V.V., Zaichik, L.E., Yashin, Y.P.: Handling qualities criterion for roll control of highly augmented aircraft. J. Guidance Contr. Dyn. 26(6), 928–934 (1993) CrossRefGoogle Scholar
  24. 24.
    Serafini, J., Gennaretti, M., Masarati, P., Quaranta, G., Dieterich, O.: Aeroelastic and biodynamic modeling for stability analysis of rotorcraft-pilot coupling phenomena. In: 34th European Rotorcraft Forum, Liverpool (2008)Google Scholar
  25. 25.
    Sheldon, W., Stevens, S.S., Tucker, W.B.: The varieties of human physique: An introduction to constitutional psychology. Harper and Brothers Publishers, New York (1940)Google Scholar
  26. 26.
    Sövényi, S., Gillespie, R.B.: Cancellation of biodynamic feedthrough in vehicle control tasks. IEEE Trans. Contr. Sys. Technol. 15(6), 1018–1029 (2007). doi: 10.1109/TCST.2007.899679 CrossRefGoogle Scholar
  27. 27.
    van der Helm, F.C.T., Schouten, A.C., de Vlugt, E., Brouwn, G.G.: Identification of intrinsic and reflexive components of human arm dynamics during postural control. J. Neurosci. Methods 119(1), 1–14 (2002). doi: 10.1016/S0165-0270(02)00147-4 CrossRefGoogle Scholar
  28. 28.
    Venrooij, J., Abbink, D.A., Mulder, M., van Paassen, M.M., Mulder, M.: Biodynamic feedthrough is task dependent. In: IEEE Int. Conf. on Systems, Man and Cybernetics, Istanbul, pp. 2571–2578 (2010). doi: 10.1109/ICSMC.2010.5641915
  29. 29.
    Venrooij, J., Abbink, D.A., Mulder, M., van Paassen, M.M., Mulder, M.: A method to measure the relationship between biodynamic feedthrough and neuromuscular admittance. IEEE Trans. Sys. Man Cybern. Part B Cybern. 41(4), 1158–1169 (2011). doi: 10.1109/TSMCB.2011.2112347 CrossRefGoogle Scholar
  30. 30.
    Venrooij, J., Mulder, M., van Paassen, M.M., Abbink, D.A., Bülthoff, H.H., Mulder, M.: Cancelling biodynamic feedthrough requires a subject and task dependent approach. In: IEEE Int. Conf. on Systems, Man, and Cybernetics, Anchorage, pp. 1670–1675 (2011). doi: 10.1109/ICSMC.2011.6083911
  31. 31.
    Venrooij, J., Mulder, M., van Paassen, M.M., Abbink, D.A., Mulder, M.: A review of biodynamic feedthrough mitigation techniques. In: 11th IFAC/IFIP/IFORS/IEA Symposium on analysis, design, and evaluation of human-machine systems, Valenciennes (2010)Google Scholar
  32. 32.
    Venrooij, J., Yilmaz, D., Pavel, M.D., Quaranta, G., Jump, M., Mulder, M.: Measuring biodynamic feedthrough in helicopters. In: 37th Eur. Rotorcraft Forum, Gallarate, pp. 967–976 (2011)Google Scholar
  33. 33.
    Walden, R.B.: A retrospective survey of pilot-structural coupling instabilities in naval rotorcraft. In: American Helicopter Society 63rd Annual Forum, Virginia Beach, pp. 897–914 (2007)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2013

Authors and Affiliations

  • Joost Venrooij
    • 1
  • Marilena D. Pavel
    • 2
  • Max Mulder
    • 2
  • Frans C. T. van der Helm
    • 2
  • Heinrich H. Bülthoff
    • 1
  1. 1.Max Planck Institute for Biological CyberneticsTübingenGermany
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations