CEAS Aeronautical Journal

, Volume 5, Issue 1, pp 29–39 | Cite as

Rotorcraft aeroelastic stability using robust analysis

  • Giuseppe Quaranta
  • Aykut Tamer
  • Vincenzo Muscarello
  • Pierangelo Masarati
  • Massimo Gennaretti
  • Jacopo Serafini
  • Marco Molica Colella
Original Paper

Abstract

This paper discusses the impact of different models of aerodynamic loads on rotorcraft-pilot couplings stability using a robust stability analysis approach. The aeroelasticity of the main rotor of a helicopter is formulated using aerodynamic models based on the blade element/momentum theory and boundary element method coupled to a finite element model of the blade. The resulting linearized models are used to determine stability limits according to the generalized Nyquist criterion, associated with the accelerations of the pilot’s seat caused by the involuntary action of the pilot on the control inceptors. The resulting stability curves are discussed considering examples of involuntary pilot transfer functions from the literature.

Keywords

Rotorcraft aeroelasticity Robust stability Rotorcraft-pilot couplings 

Notes

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 266073.

References

  1. 1.
    Latchman, H.A., Crisalle, O.D., Basker, V.R.: The Nyquist robust stability margin—a new metric for the stability of uncertain systems. Int. J. Robust Nonlinear Control 7(2), 211–226 (1997). doi:10.1002/(SICI)1099-1239(199702)7:2<211::AID-RNC299>3.0.CO;2-8 CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control. John Wiley & Sons, Chichester (2005)Google Scholar
  3. 3.
    Döll, C., Ferreres, G., Magni, J.F.: μ Tools for flight control robustness assessment. Aerosp. Sci. Technol. 3(3), 177–189 (1999). doi:10.1016/S1270-9638(99)80041-8 CrossRefMATHGoogle Scholar
  4. 4.
    Amato, F., Iervolino, R., Scala, S., Verde, L.: New criteria for the analysis of PIO based on robust stability methods. In: AIAA Atmospheric Flight Mechanics Conference, Portland, OR, USA, August 9–11 1999. AIAA-1999-4006. (1999)Google Scholar
  5. 5.
    Amato, F., Iervolino, R., Scala, S., Verde, L.: Category II pilot in-the-loop oscillations analysis from robust stability methods. J. Guid. Control. Dynam. 24(3), 531–538 (2001). doi:10.2514/2.4743 CrossRefGoogle Scholar
  6. 6.
    Borglund, D.: Robust eigenvalue analysis using the structured singular value: The μ − p flutter method. AIAA J. 46(11), 2806–2813 (2008). doi:10.2514/1.35859 CrossRefGoogle Scholar
  7. 7.
    Martin, L., Anders, K.: Industrial application of robust aeroelastic analysis. J. Aircraft 48(4), 1176–1183 (2011). doi:10.2514/1.55327 CrossRefGoogle Scholar
  8. 8.
    Masarati, P., Muscarello, V., Quaranta, G.: Robust aeroservoelastic stability of helicopters: application to the air/ground resonance. In: American Helicopter Society 67th Annual Forum, Virginia Beach, VA, May 3–5 (2011)Google Scholar
  9. 9.
    Quaranta, G., Muscarello, V., Masarati, P.: Lead-lag damper robustness analysis for helicopter ground resonance. J. Guid. Control. Dynam. 36(4), 1150–1161 (2013). doi:10.2514/1.57188 Google Scholar
  10. 10.
    Muscarello, V., Masarati, P., Quaranta, G.: Robust aeroservoelastic analysis for the investigation of rotorcraft pilot couplings. In: 3rd CEAS Air & Space Conference, Venice, Italy, October 24–28 (2011)Google Scholar
  11. 11.
    Quaranta, G., Masarati, P., Venrooij, J.: Robust stability analysis: a tool to assess the impact of biodynamic feedthrough on rotorcraft. In: American Helicopter Society 68th Annual Forum, Fort Worth, Texas, May 1–3 (2012)Google Scholar
  12. 12.
    Masarati, P., Muscarello, V., Quaranta, G.: Linearized aeroservoelastic analysis of rotary-wing aircraft. In: 36th European Rotorcraft Forum, pp. 099.1–10. Paris, France, September 7–9 (2010)Google Scholar
  13. 13.
    Masarati, P., Muscarello, V., Quaranta, G., Locatelli, A., Mangone, D., Riviello, L., Viganò, L.: An integrated environment for helicopter aeroservoelastic analysis: the ground resonance case. In: 37th European Rotorcraft Forum, pp. 177.1–12. Gallarate, Italy, September 13–15 (2011)Google Scholar
  14. 14.
    Gennaretti, M., Bernardini, G.: Aeroacousto-elastic modeling for response analysis of helicopter rotors. In: Buttazzo, G., Frediani, A. (eds.) Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, pp. 27–50. Springer Science+Business Media, LLC 2012, New York (2012) doi:10.1007/978-1-4614-2435-2_2
  15. 15.
    Gennaretti, M., Muro, D.: Multiblade reduced-order aerodynamics for state-space aeroelastic modeling of rotors. J. Aircraft 49(2), 495–502 (2012). doi:10.2514/1.C031422 CrossRefGoogle Scholar
  16. 16.
    Juan Cockburn, C., Blaise Morton, G.: Linear fractional representations of uncertain systems. Automatica 33(7), 1263–1271 (1997). doi:10.1016/S0005-1098(97)00049-6 CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Dieterich, O., Götz, J., DangVu, B., Haverdings, H., Masarati, P., Pavel, M.D., Jump, M., Gennaretti, M.: Adverse rotorcraft-pilot coupling: Recent research activities in Europe. In: 34th European Rotorcraft Forum, Liverpool, UK, September 16–19 (2008)Google Scholar
  18. 18.
    Padfield, G.D.: Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modelling. Blackwell Publishing, Oxford (2007)Google Scholar
  19. 19.
    Hodges, D.H., Dowell, E.H.: Nonlinear equation for the elastic bending and torsion of twisted nonuniform rotor blades. TN D-7818, NASA (1974)Google Scholar
  20. 20.
    Gennaretti, M., Bernardini, G.: Novel boundary integral formulation for blade-vortex interaction aerodynamics of helicopter rotors. AIAA J. 45(6), 1169–1176 (2007). doi:10.2514/1.18383 CrossRefGoogle Scholar
  21. 21.
    Ianniello, S., Bernardini, G., Serafini, J., Gennaretti, M.: Assessment of computational models for the effect of aeroelasticity on BVI noise prediction. Int. J. of Aeroacoust., 6(3),199–222 (2007)Google Scholar
  22. 22.
    Mayo, J.R.: The involuntary participation of a human pilot in a helicopter collective control loop. In: 15th European Rotorcraft Forum, pp. 81.1–12. Amsterdam, The Netherlands, 12–15 September (1989)Google Scholar
  23. 23.
    Masarati, P., Quaranta, G., Jump, M.: Experimental and numerical helicopter pilot characterization for aeroelastic rotorcraft-pilot couplings analysis. Proc. IMechE Part G J. Aerospace Eng. 227(1), 124–140 (2013). doi:10.1177/0954410011427662 CrossRefGoogle Scholar
  24. 24.
    Parham, T., Jr., Popelka, D., Miller, D.G., Froebel, A.T.: V-22 pilot-in-the-loop aeroelastic stability analysis. In: American Helicopter Society 47th Annual Forum, Phoenix, Arizona (USA), May 6–8 (1991)Google Scholar
  25. 25.
    Zanoni, A., Masarati, P., Quaranta, G.: Upper limb mechanical impedance variability estimation by inverse dynamics and torque-less activation modes. In: Eberhard, P., Ziegler, P. (eds.) 2nd Joint International Conference on Multibody System Dynamics, Stuttgart, Germany, May 29–June 1 (2012)Google Scholar
  26. 26.
    Masarati, P., Quaranta, G., Zanoni, A.: Dependence of helicopter pilots’ biodynamic feedthrough on upper limbs’ muscular activation patterns. Proc. IMechE Part K J. Multi-body Dyn. (2013). doi:10.1177/1464419313490680
  27. 27.
    McRuer, D.T., Jex, H.R.: A review of quasi-linear pilot models. IEEE Trans. Human Factors Electron. HFE-8(3), 231–249 (1967). doi:10.1109/THFE.1967.234304 Google Scholar
  28. 28.
    Mattaboni, M., Quaranta, G., Masarati, P., Jump, M.: Experimental identification of rotorcraft pilots’ biodynamic response for investigation of PAO events. In: 35th European Rotorcraft Forum, pp. 1–12. Hamburg, Germany, September 22–25 (2009)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2013

Authors and Affiliations

  • Giuseppe Quaranta
    • 1
  • Aykut Tamer
    • 1
  • Vincenzo Muscarello
    • 1
  • Pierangelo Masarati
    • 1
  • Massimo Gennaretti
    • 2
  • Jacopo Serafini
    • 2
  • Marco Molica Colella
    • 2
  1. 1.Dipartimento di Scienze e Tecnologie AerospazialiPolitecnico di MilanoMilanoItaly
  2. 2.Dipartimento di IngegneriaUniversità Roma TreRomaItaly

Personalised recommendations