Advertisement

Genetic features of Haliotis discus hannai by infection of vibrio and virus

  • Jennifer Im
  • Heui-Soo KimEmail author
Review

Abstract

Background

Haliotis discus hannai more commonly referred to as the Pacific Abalone is of significant commercial and economical value in South Korea, with it being the second largest producer in the world. Despite this significance there is a lack of genetic studies with regards to the species. Most existing studies focused mainly on environmental factors.

Objective

To provide a comprehensive review describing the genetic feature of Haliotis discus hannai by infection of vibrio and virus.

Methods

This review summarized the immune response in the Haliotis spp. with regards to immunological genes such as Cathepsin B, C-type lectin and Toll-like receptors. Genetic studies with regards to transposable elements and miRNAs are few and far between. A study identified LTR retrotransposon Ty3/gypsy in the species. As to miRNA, a single study identified numerous miRNAs in the Haliotis discus hannai.

Conclusion

This paper sought to provide an overview of genetic perspective with regards to immune response genes, transposable elements and miRNAs.

Keywords

Haliotis discus hannai Immune genes Transposable element miRNA 

Notes

Acknowledgements

This research was a part of the project titled “Omics based on fishery disease control technology development and industrialization (20150242) funded by the Ministry of Oceans and Fisheries, South Korea.

Compliance with ethical standards

Conflict of interest

The authors has no conflicting interests.

References

  1. Adachi K, Okumura S (2012) Determination of genome size of Haliotis discus hannai and H. diversicolor aquatilis (Haliotidae) and phylogenetic examination of this family. Fish Sci 78:849–852CrossRefGoogle Scholar
  2. Ayarpadikannan S, Kim H-S (2014) The impact of transposable elements in genome evolution and genetic instability and their implications in various diseases. Genom Inform 12:98–104CrossRefGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS (2018) Ten things you should know about transposable elements. Genome Biol 19:199–210PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cai J, Li J, Thompson KD, Li C, Han H (2007) Isolation and characterization of pathogenic Vibrio parahaemolyticus from diseased post-larvae of abalone Haliotis diversicolor supertexta. J Basic Microbiol 47:84–86PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chadès I, Curtis JM, Martin TG (2012) Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone. Conserv Biol 26:1016–1025PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chen H, Wang L, Hou Z, Liu Z, Wang W, Gao D, Gao Q, Wang M, Song L (2015) The comprehensive immunomodulation of NeurimmiRs in haemocytes of oyster Crassostrea gigas after acetylcholine and norepinephrine stimulation. BMC Genomics 16:942–955PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen H, Jiang S, Wang L, Wang L, Wang H, Qiu L, Song L (2016a) Cgi-miR-92d indirectly regulates TNF expression by targeting CDS region of lipopolysaccharide-induced TNF-α factor 3 (CgLITAF3) in oyster Crassostrea gigas. Fish Shellfish Immunol 55:577–584PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chen H, Zhou Z, Wang H, Wang L, Wang W, Liu R, Qiu L, Song L (2016b) An invertebrate-specific and immune-responsive microRNA augments oyster haemocyte phagocytosis by targeting CgIκB2. Sci Rep 6:29591–29600PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cheng P, Liu X, Zhang G, He J (2007) Cloning and expression analysis of a HSP70 gene from Pacific abalone (Haliotis discus hannai). Fish Shellfish Immunol 22:77–87PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cook PA (2016) Recent trends in worldwide abalone production. J Shellfish Res 35:581–584CrossRefGoogle Scholar
  13. Craven RC, Leure-duPree AE, Weldon RA, Wills JW (1995) Genetic analysis of the major homology region of the Rous sarcoma virus gag protein. J Virol 69:4213–4227PubMedPubMedCentralGoogle Scholar
  14. De Zoysa M, Nikapitiya C, Kim Y, Oh C, Kang DH, Whang I, Kim SJ, Lee JS, Choi CY, Lee J (2010) Allograft inflammatory factor-1 in disk abalone (Haliotis discus discus): molecular cloning, transcriptional regulation against immune challenge and tissue injury. Fish Shellfish Immunol 29:319–326PubMedCrossRefPubMedCentralGoogle Scholar
  15. Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240PubMedPubMedCentralCrossRefGoogle Scholar
  16. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877PubMedPubMedCentralCrossRefGoogle Scholar
  17. Eulalio A, Rehwinkel J, Stricker M, Huntzinger E, Yang S, Doerks T, Dorner S, Bork P, Boutros M, Izaurralde E (2007) Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 21:2558–2570PubMedPubMedCentralCrossRefGoogle Scholar
  18. Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32PubMedPubMedCentralCrossRefGoogle Scholar
  19. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105PubMedPubMedCentralCrossRefGoogle Scholar
  20. Fu Y, Shi Z, Wu M, Zhang J, Jia L, Chen X (2011) Identification and differential expression of microRNAs during metamorphosis of the Japanese flounder (Paralichthys olivaceus). PLoS One 6:e22957PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fu Y, Shi Z, Wang G, Li W, Zhang J, Jia L (2012) Expression and regulation of miR-1,-133a,-206a, and MRFs by thyroid hormone during larval development in Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol 161:226–232PubMedCrossRefPubMedCentralGoogle Scholar
  22. Fu Y, Shi Z, Wang G, Zhang J, Li W, Jia L (2013) Expression of let-7 microRNAs that are involved in Japanese flounder (Paralichthys olivaceus) metamorphosis. Comp Biochem Physiol B Biochem Mol Biol 165:106–113PubMedCrossRefPubMedCentralGoogle Scholar
  23. Fukui Y, Saitoh S, Sawabe T (2010) Environmental determinants correlated to Vibrio harveyi-mediated death of marine gastropods. Environ Microbiol 12:124–133PubMedCrossRefPubMedCentralGoogle Scholar
  24. Ghosh J, Lun CM, Majeske AJ, Sacchi S, Schrankel CS, Smith LC (2011) Invertebrate immune diversity. Dev Comp Immunol 35:959–974PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gu Y, Zhang L, Chen X (2014) Differential expression analysis of Paralichthys olivaceus microRNAs in adult ovary and testis by deep sequencing. Gen Comp Endocrinol 204:181–184PubMedCrossRefPubMedCentralGoogle Scholar
  26. Guo H, Lu Z, Zhu X, Zhu C, Wang C, Shen Y, Wang W (2018) Differential expression of microRNAs in hemocytes from white shrimp Litopenaeus vannamei under copper stress. Fish Shellfish Immunol 74:152–161PubMedCrossRefPubMedCentralGoogle Scholar
  27. Guo Z, Ding Y, Han L, Hou X (2019) Characterization of the complete mitochondrial genome of Pacific abalone Haliotis discus hannai. Fish Shellfish Immunol 4:717–718Google Scholar
  28. Huang J, Luo X, Huang M, Liu G, You W, Ke C (2018) Identification and characteristics of muscle growth-related microRNA in the Pacific abalone, Haliotis discus hannai. BMC Genom 19:915–925CrossRefGoogle Scholar
  29. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461–468PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kim S-S, Kim J-D (2019) Overview on the development of aquaculture and aquafeed production in Korea. Aquac Indones 20:1–7CrossRefGoogle Scholar
  31. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610CrossRefGoogle Scholar
  32. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532PubMedCrossRefPubMedCentralGoogle Scholar
  33. Lee I, Ajay SS, Yook JI, Kim HS, Hong SH, Kim NH, Dhanasekaran SM, Chinnaiyan AM, Athey BD (2009) New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res 19:1175–1183PubMedPubMedCentralCrossRefGoogle Scholar
  34. Lee SI, Gim JA, Lim MJ, Kim HS, Nam BH, Kim NS (2018) Ty3/Gypsy retrotransposons in the Pacific abalone Haliotis discus hannai: characterization and use for species identification in the genus Haliotis. Genes Genom 40:177–187CrossRefGoogle Scholar
  35. Lee HE, Jo A, Im J, Cha HJ, Kim WJ, Kim HH, Kim DS, Kim W, Yang TJ, Kim HS (2019) Characterization of the long terminal repeat of the endogenous retrovirus-derived microRNAs in the olive flounder. Sci Rep 9:14007–14016PubMedPubMedCentralCrossRefGoogle Scholar
  36. Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12:615–627PubMedPubMedCentralCrossRefGoogle Scholar
  37. Long JM, Maloney B, Rogers JT, Lahiri DK (2019) Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: implications in Alzheimer’s disease. Mol Psychiatry 24:345–363PubMedCrossRefPubMedCentralGoogle Scholar
  38. Malik HS, Eickbush TH (2001) Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res 11:1187–1197PubMedCrossRefPubMedCentralGoogle Scholar
  39. Miller WJ, McDonald JF, Pinsker W (1997) Molecular domestication of mobile elements. Genetica 100:261–270PubMedCrossRefPubMedCentralGoogle Scholar
  40. Najib A, Kim MS, Choi SH, Kang YJ, Kim KH (2016) Changes in microRNAs expression profile of olive flounder (Paralichthys olivaceus) in response to viral hemorrhagic septicemia virus (VHSV) infection. Fish Shellfish Immunol 51:384–391PubMedCrossRefPubMedCentralGoogle Scholar
  41. Nam BH, Kwak W, Kim YO, Kim DK, Kong HJ, Kim WJ, Kang JH, Park JY, An CM, Moon JY (2017) Genome sequence of pacific abalone (Haliotis discus hannai): the first draft genome in family Haliotidae. Gigascience 6:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ørom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471PubMedCrossRefPubMedCentralGoogle Scholar
  43. Park CJ, Kim SY (2013) Abalone aquaculture in Korea. J Shellfish Res 32:17–20CrossRefGoogle Scholar
  44. Pellicer J, Kelly LJ, Leitch IJ, Zomlefer WB, Fay MF (2014) A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. N Phytol 201:1484–1497CrossRefGoogle Scholar
  45. Pritham EJ (2009) Transposable elements and factors influencing their success in eukaryotes. J Hered 100:648–655PubMedPubMedCentralCrossRefGoogle Scholar
  46. Priyathilaka TT, Bathige S, Lee S, Nam BH, Lee J (2019) Transcriptome-wide identification, functional characterization, and expression analysis of two novel invertebrate-type Toll-like receptors from disk abalone (Haliotis discus discus). Fish Shellfish Immunol 84:802–815PubMedCrossRefPubMedCentralGoogle Scholar
  47. Qiu R, Liu X, Hu Y, Sun B (2013) Expression characterization and activity analysis of a cathepsin B from Pacific abalone Haliotis discus hannai. Fish Shellfish Immunol 34:1376–1382PubMedCrossRefPubMedCentralGoogle Scholar
  48. Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–1492PubMedPubMedCentralCrossRefGoogle Scholar
  49. Robert J (2003) Evolution of heat shock protein and immunity. Dev Comp Immunol 27:449–464PubMedCrossRefPubMedCentralGoogle Scholar
  50. Sawabe T, Inoue S, Fukui Y, Yoshie K, Nishihara Y, Miura H (2007) Mass mortality of Japanese abalone Haliotis discus hannai caused by Vibrio harveyi infection. Microbes Environ 22:300–308CrossRefGoogle Scholar
  51. Silva LC, Ortigosa LC, Benard G (2010) Anti-TNF-α agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls. Immunotherapy. 2:817–833CrossRefGoogle Scholar
  52. Springer NM, Anderson SN, Andorf CM, Ahern KR, Bai F, Barad O, Barbazuk WB, Bass HW, Baruch K, Ben-Zvi G (2018) The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat Genet 50:1282–1288PubMedCrossRefPubMedCentralGoogle Scholar
  53. Sun X, Liu Q, Yang B, Huang J (2016) Differential expression of microRNAs of Litopenaeus vannamei in response to different virulence WSSV infection. Fish Shellfish Immunol 58:18–23PubMedCrossRefPubMedCentralGoogle Scholar
  54. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824:68–88CrossRefGoogle Scholar
  55. Wang R, Wang J, Sun Y, Yang B, Wang A (2015) Antibiotic resistance monitoring in Vibrio spp. isolated from rearing environment and intestines of abalone Haliotis diversicolor. Mar Pollut Bull 101:701–706PubMedCrossRefPubMedCentralGoogle Scholar
  56. Weis WI, Taylor ME, Drickamer K (1998) The C-type lectin superfamily in the immune system. Immunol Rev 163:19–34PubMedCrossRefPubMedCentralGoogle Scholar
  57. Wu C, Zhang W, Mai K, Xu W, Wang X, Ma H, Liufu Z (2010) Transcriptional up-regulation of a novel ferritin homolog in abalone Haliotis discus hannai Ino by dietary iron. Comp Biochem Physiol 152:424–432Google Scholar
  58. Xi Q, Xiong Y, Wang Y, Cheng X, Qi E, Shu G, Wang SB, Gao L, Zhu X, Jiang Q (2015) Genome-wide discovery of novel and conserved microRNAs in white shrimp (Litopenaeus vannamei). Mol Biol Rep 42:61–69PubMedCrossRefPubMedCentralGoogle Scholar
  59. Xu F, Wang X, Feng Y, Huang W, Wang W, Li L, Fang X, Que H, Zhang G (2014) Identification of conserved and novel microRNAs in the pacific oyster Crassostrea gigas by deep sequencing. PLoS One 9:e104371PubMedPubMedCentralCrossRefGoogle Scholar
  60. Xu X, Yuan J, Yang L, Weng S, He J, Zuo H (2016) The Dorsal/miR-1959/Cactus feedback loop facilitates the infection of WSSV in Litopenaeus vannamei. Fish Shellfish Immunol 56:397–401PubMedCrossRefPubMedCentralGoogle Scholar
  61. Zhang J, Qiu R, Hu Y (2014) HdhCTL1 is a novel C-type lectin of abalone Haliotis discus hannai that agglutinates Gram-negative bacterial pathogens. Fish Shellfish Immunol 41:466–472PubMedCrossRefPubMedCentralGoogle Scholar
  62. Zhang H, Fu Y, Su Y, Shi Z, Zhang J (2015) Identification and expression of HDAC4 targeted by miR-1 and miR-133a during early development in Paralichthys olivaceus. Comp Biochem Physiol 179:1–8CrossRefGoogle Scholar
  63. Zhang B, Zhou Z, Sun L (2016) pol-miR-731, a teleost miRNA upregulated by megalocytivirus, negatively regulates virus-induced type I interferon response, apoptosis, and cell cycle arrest. Sci Rep 6:28354–28367PubMedPubMedCentralCrossRefGoogle Scholar
  64. Zhou H, Rigoutsos I (2014) Mir-103a-3p targets the 5'UTR of GPRC5A in pancreatic cells. RNA 20:1431–1439PubMedPubMedCentralCrossRefGoogle Scholar
  65. Zuo H, Yuan J, Chen Y, Li S, Su Z, Wei E, Li C, Weng S, Xu X, He J (2016) A microRNA-mediated positive feedback regulatory loop of the NF-kappaB pathway in Litopenaeus vannamei. J Immunol 196:3842–3853PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Genetics Society of Korea 2019

Authors and Affiliations

  1. 1.Department of Biological Sciences, College of Natural SciencesPusan National UniversityBusanRepublic of Korea
  2. 2.Institute of Systems BiologyPusan National UniversityBusanRepublic of Korea

Personalised recommendations