Advertisement

Genetic and phylogenetic structure of Hynobius quelpaertensis, an endangered endemic salamander species on the Korean Peninsula

  • Ho Young Suk
  • Han-Gyu Bae
  • Dong-Young Kim
  • Hari Won
  • Hae Jun Baek
  • Chang Hoon Lee
  • Dong Youn Kim
  • Young Min Go
  • Jae-Young Song
  • Hang Lee
  • Mi-Sook MinEmail author
Research Article
  • 14 Downloads

Abstract

Background

The Korean Peninsula is a small but unique area showing great endemic Hynobius diversity with H. quelpaertensis, H. yangi, H. unisacculus and three species candidates (HC1, HC3 and HC4). H. quelpaertensis is distributed in the southern part and in Jeju Island, while the remaining species have extremely narrow distributions.

Objectives

To examine the genetic structure of H. quelpaertensis and the phylogenetic placement in Hynobius.

Methods

Three mitochondrial and six microsatellite loci were genotyped for 204 Hynobius quelpaertensis, three H. leechii, three H. yangi, three HC1, two H. unisacculus, three HC3, three HC4 and ten Japanses H. lichenatus.

Results

A high level of mitochondrial diversity was found in H. quelpaertensis. Our mitochondrial data showed evidence of a historical link between inland and Jeju Island despite the signature of founder effect likely experienced by the early island populations. However, our microsatellite analysis showed the fairly clear signature of isolation history between in- and island populations. Upon phylogenetic analysis, H. quelpaertensis, H. unisacculus and HC1 formed a cluster, whereas H. yangi belonged to a separate cluster. HC3 and HC4 were clustered with either H. quelpaertensis or H. yangi depending on the locus used.

Conclusion

Our results show at least partially the historical imprints engraved by dispersal of Korean endemic Hynobius during Pleistocene, potentially providing a fundamental basis in determining the conservation units and finding management strategies for these species.

Keywords

Hynobius quelpaertensis Hynobiidae Korean Peninsula Mitochondrial loci Microsatellites Phylogeny 

Notes

Acknowledgements

We thank HT Kim and YM Go for providing field assistance.

Funding

This research was performed with the support of the grants from the National Research Foundation of Korea (Grant no. NRF-2016R1D1A1B03934071) and from the National Institute of Biological Resources, Ministry of Environment (Grant no. NIBR201403201).

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Supplementary material

13258_2019_886_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1106 kb)

References

  1. Baek HJ, Lee MY, Lee H, Min MS (2011a) Mitochondrial DNA data unveil highly divergent populations within the genus Hynobius (Caudata: Hynobiidae) in South Korea. Mol Cells 31(2):105–112PubMedPubMedCentralCrossRefGoogle Scholar
  2. Baek HJ, Song JY, Lee H, Min MS (2011b) Species identification of a new candidate taxon HC2 (Caudata: Hynobiidae) using mitochondrial CO1 gene. Korean J Herpetol 3(1):25–32Google Scholar
  3. Choi SK, Lee JE, Kim YJ, Min MS, Voloshina I, Myslenkov A, Oh JG, Kim TH, Markov N, Seryodkin I, Ishiguro N, Yu L, Zhang YP, Lee H, Kim KS (2014) Genetic structure of wild boar (Sus scrofa) populations from East Asia based on microsatellite loci analyses. BMC Genet 15:85PubMedPubMedCentralCrossRefGoogle Scholar
  4. d’Alpoim Guedes J, Austermann J, Mitrovica JX (2016) Lost foraging opportunities for East Asian hunter-gatherers due to rising sea level since the last glacial maximum. Geoarchaeology 31(4):255–266CrossRefGoogle Scholar
  5. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29(8):1969–1973PubMedPubMedCentralCrossRefGoogle Scholar
  6. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361CrossRefGoogle Scholar
  7. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620PubMedPubMedCentralCrossRefGoogle Scholar
  8. Fouquet A, Vences M, Salducci MD, Meyer A, Marty C, Blanc M, Gilles A (2007) Revealing cryptic diversity using molecular phylogenetics and phylogeography in frogs of the Scinax ruber and Rhinella margaritifera species groups. Mol Phylogenet Evol 43(2):567–582PubMedCrossRefGoogle Scholar
  9. Fu Y (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2):915–925PubMedPubMedCentralGoogle Scholar
  10. Goudet J (2001) FSTAT, a program to estimate and test gene diversity and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed May 2019
  11. Greenan TM, Griffiths CL, Santamaria CA (2018) Molecular approaches uncover cryptic diversity in intertidal Ligia isopods (Crustacea, Isopoda, Ligiidae) across the southern Africa coastline. PeerJ 6:e4658PubMedPubMedCentralCrossRefGoogle Scholar
  12. Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48(2):361–372PubMedCrossRefGoogle Scholar
  13. Hamilton MB, Pincus EL, Di Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27(3):500–507PubMedCrossRefGoogle Scholar
  14. Helms BS, Vaught RC, Suciu SK (2015) Cryptic diversity within two endemic crayfish species of the Southeastern US revealed by molecular genetics and geometric morphometrics. Hydrobiologia 755(1):283–298CrossRefGoogle Scholar
  15. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc B 359(1442):183–195CrossRefGoogle Scholar
  16. Hoarau G, Coyer JA, Veldsink JH, Stam WT, Olsen JL (2007) Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Mol Ecol 16(17):3606–3616PubMedCrossRefGoogle Scholar
  17. Jo Y, Kim T, Choi B, Oh H (2012) Current status of terrestrial mammals on Jeju Island. J Species Res 1(2):249–256CrossRefGoogle Scholar
  18. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14(6):587–589PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kim JB, Min MS, Matsui M (2003) A new species of lentic breeding Korean salamander of the genus Hynobius (Amphibia, Urodela). Zool Sci 20(9):1163–1169PubMedCrossRefGoogle Scholar
  20. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948PubMedPubMedCentralCrossRefGoogle Scholar
  21. Lee YS, Markov N, Voloshina I, Argunov A, Bayarlkhagva D, Oh JG, Park YS, Min MS, Lee H, Kim KS (2015) Genetic diversity and genetic structure of the Siberian roe deer (Capreolus pygargus) populations from Asia. BMC Genet 16:100PubMedPubMedCentralCrossRefGoogle Scholar
  22. Leigh JW, Bryant D (2015) PopART: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116CrossRefGoogle Scholar
  23. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452CrossRefGoogle Scholar
  24. Luikart G, Allendorf F, Cornuet J, Sherwin W (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89(3):238–247PubMedCrossRefGoogle Scholar
  25. Min MS, Baek HJ, Song JY, Chang MH, Poyarkov NA Jr (2016) A new species of salamander of the genus Hynobius (Amphibia, Caudata, Hynobiidae) from South Korea. Zootaxa 4169(3):475–503PubMedCrossRefGoogle Scholar
  26. Monsen KJ, Blouin MS (2003) Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance. Mol Ecol 12(12):3275–3286PubMedCrossRefGoogle Scholar
  27. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkCrossRefGoogle Scholar
  28. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274PubMedCrossRefGoogle Scholar
  29. Oh DJ, Chang MH, Oh HS, Jung YH (2007) The complete mitochondrial DNA sequence of the Jeju salamander, Hynobius quelpaertensis, and the phylogenetic relationships among the Hynobiidae. Korean J Genet 29(3):331–341Google Scholar
  30. Oliver PM, Adams M, Lee MS, Hutchinson MN, Doughty P (2009) Cryptic diversity in vertebrates: molecular data double estimates of species diversity in a radiation of Australian lizards (Diplodactylus, Gekkota). Proc Biol Sci 276(1664):2001–2007PubMedPubMedCentralCrossRefGoogle Scholar
  31. Piry S, Luikart G, Cornuet J (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90(4):502–503CrossRefGoogle Scholar
  32. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedPubMedCentralGoogle Scholar
  33. Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23(10):564–571PubMedCrossRefGoogle Scholar
  34. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86(3):248–249CrossRefGoogle Scholar
  35. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  36. Semlitsch RD (2002) Critical elements for biologically based recovery plans of aquatic-breeding amphibians. Conserv Biol 16(3):19–629CrossRefGoogle Scholar
  37. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129(2):555–562PubMedPubMedCentralGoogle Scholar
  38. Sohn YK, Park KH (2004) Early-stage volcanism and sedimentation of Jeju Island revealed by the Sagye borehole, SW Jeju Island, Korea. Geosci J 8(1):73–84CrossRefGoogle Scholar
  39. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595PubMedPubMedCentralGoogle Scholar
  40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  41. Wang IJ (2009) Fine-scale population structure in a desert amphibian: landscape genetics of the black toad (Bufo exsul). Mol Ecol 18(18):3847–3856PubMedCrossRefGoogle Scholar
  42. Woo KS, Sohn YK, Yoon S, Ahn US, Spate A (2013) Jeju Island geopark—a volcanic wonder of Korea. Springer, BerlinCrossRefGoogle Scholar
  43. Yang SY, Kim JB, Min MS, Suh JH, Kang YJ (2001) Monograph of Korean amphibia. Academy Books, SeoulGoogle Scholar

Copyright information

© The Genetics Society of Korea 2019

Authors and Affiliations

  • Ho Young Suk
    • 1
  • Han-Gyu Bae
    • 1
  • Dong-Young Kim
    • 1
  • Hari Won
    • 1
  • Hae Jun Baek
    • 2
    • 3
  • Chang Hoon Lee
    • 2
    • 3
  • Dong Youn Kim
    • 2
  • Young Min Go
    • 4
  • Jae-Young Song
    • 5
  • Hang Lee
    • 2
  • Mi-Sook Min
    • 2
    Email author
  1. 1.Department of Life SciencesYeungnam UniversityGyeongsanSouth Korea
  2. 2.Research Institute for Veterinary Science, College of Veterinary MedicineSeoul National UniversitySeoulSouth Korea
  3. 3.National Institute of EcologySeocheonSouth Korea
  4. 4.Jeju Amphibian Ecosystem InstituteJejuSouth Korea
  5. 5.National Park Research InstituteKorea National Park ServiceWonjuSouth Korea

Personalised recommendations