Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L.) mutant Siyl-1 with yellow–green leaf color

  • Tong-Mei Gao
  • Shuang-Ling Wei
  • Jing Chen
  • Yin Wu
  • Feng Li
  • Li-Bin Wei
  • Chun Li
  • Yan-Juan Zeng
  • Yuan Tian
  • Dong-Yong Wang
  • Hai-Yang ZhangEmail author
Open Access
Research Article



Both photosynthetic pigments and chloroplasts in plant leaf cells play an important role in deciding on the photosynthetic capacity and efficiency in plants. Systematical investigating the regulatory mechanism of chloroplast development and chlorophyll (Chl) content variation is necessary for clarifying the photosynthesis mechanism for crops.


This study aims to explore the critical regulatory mechanism of leaf color mutation in a yellow–green leaf sesame mutant Siyl-1.


We performed the genetic analysis of the yellow-green leaf color mutation using the F2 population of the mutant Siyl-1. We compared the morphological structure of the chloroplasts, chlorophyll content of the three genotypes of the mutant F2 progeny. We performed the two-dimensional gel electrophoresis (2-DE) and compared the protein expression variation between the mutant progeny and the wild type.


Genetic analysis indicated that there were 3 phenotypes of the F2 population of the mutant Siyl-1, i.e., YY type with light-yellow leaf color (lethal); Yy type with yellow-green leaf color, and yy type with normal green leaf color. The yellow-green mutation was controlled by an incompletely dominant nuclear gene, Siyl-1. Compared with the wild genotype, the chloroplast number and the morphological structure in YY and Yy mutant lines varied evidently. The chlorophyll content also significantly decreased (P < 0.05). The 2-DE comparison showed that there were 98 differentially expressed proteins (DEPs) among YY, Yy, and yy lines. All the 98 DEPs were classified into 5 functional groups. Of which 82.7% DEPs proteins belonged to the photosynthesis and energy metabolism group.


The results revealed the genetic character of yellow-green leaf color mutant Siyl-1. 98 DEPs were found in YY and Yy mutant compared with the wild genotype. The regulation pathway related with the yellow leaf trait mutation in sesame was analyzed for the first time. The findings supplied the basic theoretical and gene basis for leaf color and chloroplast development mechanism in sesame.


Sesame 2-DE Proteomic Yellow–green leaf mutant Photosynthesis 



Adenosine triphosphate synthase


ATP synthase subunit d




Chloroplast outer membrane



CYP 38

Cyclophilin 38

Cyt b6-f

Cytochrome b6-f complex iron-sulfur subunit


Two-dimensional gel electrophoresis


Differentially expressed proteins




Fructose-bisphosphate aldolase


Ferredoxin-NADP reductase


Glyceraldehyde-3-phosphate dehydrogenase A


Glyceraldehyde-3-phosphate dehydrogenase




Glutamine synthetase


Photosystem I light harvesting complex gene 1


Chlorophyll a-b binding protein


Malate dehydrogenase


The number of identified peptides for each protein


Oxygen-evolving enhancer protein


Osmiophilic globule


Photosynthetic electron transfer C


Photosystem I subunit D-2


Photosystem II subunit O-2


Photosystem II subunit P-1


Photosystem I reaction center


Photosystem I P subunit


Rubisco large subunit


Ribose-5-phosphate isomerase


Ribosomal protein S1


1,5-diphosphate ribulose carboxylase/oxygenase


The sequence coverage of identified proteins


Trichloroacetic acid






Triosephosphate isomerase




Light yellow


Normal green




Photosynthesis is widely considered as the basis of growth, development and yield in plants. Chlorophyll (Chl) is the primary photosynthetic pigment for light harvesting and driving electron transport in the reaction centers in higher plants. Leaf color mutants are helpful for systematically investigating the mechanisms of photosynthesis and photosynthetic pigment biosynthesis in plants, as the leaf colors of mutants are closely related to chlorophyll synthesis or photosynthesis efficiency (Yang et al. 2014). Many reports have shown that most leaf color related mutagenesis is involved in the structure and function variation of the chloroplasts (Li et al. 2018a, b; Zhang et al. 2006a, b), chlorophyll biosynthesis and degradation mechanisms (Oda-Yamamizo et al. 2016), photosynthesis (Slattery et al. 2017), and chloroplast development (Sugliani et al. 2016; Leister 2003; Sang et al. 2010).

There are 5 leaf color mutation types in plants, i.e., albino, yellow, light-green, stripe, and spot (Awan et al. 1980; Falbel and Staehelin 1994; Gustafsson 2010). Moreover, the leaf color mutants related with the chlorophyll variation are comprised of two categories: (1) mutants lack of chlorophyll b, such as the barley mutants lacking chlorophyll b (Thornber and Highkin 2010); and (2) mutants with reduced synthesis capacity of the total chlorophyll and chlorophyll b. Most mutants currently belong to the second category (Zhang et al. 2006a, b).

Leaf color can be controlled by both nuclear and cytoplasmic inheritance and presents as a quantitative or qualitative trait (Nasyrov 1987). Some leaf color mutants are caused by monogenic mutation. The recessive mutations are predominant and have a lower dominant mutation rate (Nagata et al. 2005). Cytoplasmic inheritance accounts for a small proportion of leaf color mutants (Allen et al. 1988). There are very few leaf color mutations that are of the nucleo-cytoplasmic interaction type (Murray and Kohorn 1991). At present, research on leaf colors is focused on genetic analysis (Li et al. 2018a, b) and the regulatory mechanism of leaf color in plants under stress environments (Yu et al. 2016; Huang et al. 2017b).

Sesame (Sesamum indicum L.) is the ‘queen of the oil seed crops’ for the high oil content (45–63%) and numerous beneficial minerals, antioxidants, and multivitamins in the seeds (Anilakumar et al. 2010; Zhang et al. 2019). However, sesame is a low yield crop, compared with the cereals and other oilseed crops. To improve the photosynthesis and increase the photosynthesis transferring frequency is the key objectives of high-yield sesame breeding. During creating new breeding materials in the past decade, we obtained a leaf color mutant Siyl-1 from the sesame EMS mutant library induced through EMS mutagenesis (Wang et al. 2017). The mutant exhibited the inheritable yellow-green leaf color trait under different growing environments. Elementary selfing pollination results of the mutant Siyl-1 showed that there are three phenotypes in the progeny of the mutant Siyl-1, i.e., light-yellow leaf color with seedling lethal phenotype (named YY), yellow-green leaf color (Yy) and normal green leaf color (yy) (the wild type). Thus, in order to systematically analyze and parse out the molecular regulatory mechanism of yellow leaf mutants in sesame, we performed the cytology, genetics, and proteomics analyses of the progeny of the yellow-green mutant Siyl-1. However, there is no study reporting a powerful approach to identify and isolate different proteins by two-dimensional gel electrophoresis (2-DE) in sesame.

In this study, we presented the main results of the yellow-green mutant Siyl-1 in (1) the genetic analysis of the yellow-green leaf color trait within the progeny of the mutant Siyl-1, (2) the cytological characteristics comparison of the light-yellow leaf color mutant genotype (YY) and the yellow-green leaf genotype (Yy) and the wild type with the normal green leaf color (yy), and (3) the protein expression profiles of the three genotypes of the Siyl-1 progeny. The specific expressed proteins related to photosynthesis in the mutant were also analyzed for the first time. The findings provided a foundation for further sesame proteomics research.

Materials and methods

Plant materials

The yellow–green leaf mutant Siyl-1 used in this study was induced from var. ‘Yuzhi 11’ using EMS mutagenesis by the Henan Sesame Research Center (HSRC), Henan Academy of Agricultural Sciences (HAAS), China. Three chinese sesame varieties, i.e., Yuzhi 4, Zhengtaizhi 1, and Zhengheizhi 1 were used as the wild type with normal green leaf color for cross hybridization and the genetic and cytological analyses. All the above materials are available from the sesame germplasm reservoir of HSRC, HAAS.

To explore the genetic characteristics of the leaf color trait in the mutant Siyl-1, the self-pollution and the cross hybridization of 6 groups (Table 2S) were performed using the above materials during 2014–2016. The leaf color traits of each sample were observed three times during seedling stage, budding stage and flowering stage. Chi square tests (P < 0.05) were used to determine the segregation significance for the leaf color characteristics.

The healthy seeds of the three genotypes of the mutant Siyl-1 progeny were cultured in artificial growth chambers (GPJ-400, Changzhou, China) at 30 °C with 70% relative humidity and a 14 h light/10 h dark cycle for 1 week for leaf harvest. Three biological replicates were set.

Chlorophyll content measurement

After germinating, 3 g of cotyledons per genotype from the mutant Siyl-1 progeny was collected for chlorophyll content measurement. Chlorophyll content was measured and calculated according to the methods of Arnon (1949) using a spectrophotometer (TU-1810, Beijing, China). The chlorophyll of three plantlets was extracted and measured in 3 biological replicates.

Cytological observation

After germinating, 2 × 2 mm sections of the young leaves of the three genotypes (yy, Yy, and YY) were collected and immediately prefixed in 3% precooled glutaraldehyde fixative (pH = 7.2). Samples were rinsed with 0.1 mol L−1 phosphate buffer (pH = 7.2), fixed in 1% osmium acid solution, and then rinsed using the same buffer. All fixed samples were dehydrated, impregnated, embedded, and polymerized with the epoxy resin Epon-812. Sectioning was performed using a Power Tome-XL ultrathin microtome, and the samples were double-stained with uranyl acetate and citrate. The chloroplast structure was observed and imaged under a Hitachi H-7650 transmission electron microscope (Hitachi, Tokyo, Japan). For each sample, three biological replicates were observed.

Protein extraction and 2-DE

After germinating, 3 g of cotyledons per genotype of the mutants was collected and frozen with liquid nitrogen for subsequent protein extraction. Total proteins in leaves were extracted using trichloroacetic acid (TCA)/acetone mixture (Parker et al. 2006). The optical density of the protein samples was measured at 595 nm using Bradford’s (1976) method. Samples were then stored at − 70 °C for 2-DE electrophoresis. Three biological replicates per sample were performed.

2-DE was performed using the methods of Ma et al. (2012). The 100 mL samples were mixed with 400 μL hydrated sample buffer. SDS-PAGE was performed following the method of Sui et al. (2015). Polyacrylamide gels were stained, washed, and then scanned with a Molecular Imager Pharos FX System (Bio-Rad) (AB Company, Milwaukee, USA).

Protein in-gel digestion and MALDI-TOF-TOF/MS analysis

Target protein spots were individually cut from the gel and washed three times with ultra-sterilized water. Each protein sample was decolorized with 50 μL of ammonium bicarbonate (100 mmol L−1 NH4HCO3). After the excess solution was discarded, 100% acetonitrile was added for 5 min. Then, 5 μL of ammonium bicarbonate solution (50 mmol L−1 NH4HCO3) with 10 ng of trypsin was added per sample tube. Each tube was then covered with 20 μL of ammonium bicarbonate solution and digested at 37 °C for 16 h. Finally, 5 μL of 5% trifluoroacetic acid was added per tube and left for 10 min to terminate the reaction.

After digestion, 1 μL of supernatant was placed on the sample target point. A 1 μL aliquot of α-cyano-4-hydroxycinnamic acid matrix solution was placed on the same point. The target sample was then subjected to matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-TOF/MS). Mass spectrometry parameters were set as follows: primary MS molecular weights ranged from 700 to 3500 Da, and secondary MS molecular weights ranged from 40 to 1050 Da.

Protein identification and data analysis

Incorporating MS and secondary MS data, raw data files were converted to *.mgf files. The file was submitted to the MASCOT search engine for protein retrieval (http: The NCBI nr database was used for the collection of protein information with the taxonomic parameter set to green plants. The function of DEPs was interpreted using the UniProt database ( To better understand the biological function and interaction of DEPs, a protein–protein interaction network (PPI) was predicted using the online analysis tool STRING 9.0 (

Quantitative real-time PCR analysis

The gene sequences for these proteins were obtained from the genome database of Yuzhi 11 (data unpublished) and quantitative real-time PCR (qRT-PCR) analysis. Total RNA was extracted from sesame leaves of all three phenotypes with an RNA extraction and purification kit (Sangon Biotech, Shanghai, China) according to the manufacturer’s instructions. The total RNA was reverse transcribed into cDNA with a Revert Aid First Strand cDNA Synthesis Kit (Thermo Scientific, Vilnius, Lithuania). qRT-PCR was performed with FastStart Essential DNA Green Master (Roche, Mannheim, Germany) using the Realplex 4 MasterCycler real-time PCR System (Eppendorf AG, Hamburg, Germany). qRT-PCR was conducted in accordance with the manufacturer’s instructions. The reaction conditions were as follows: 1 cycle of 50 °C for 2 min; 1 cycle of 95 °C for 10 min; 40 cycles of 95 °C for 15 s; 40 cycles of 60 °C for 20 s; and 40 cycles of 72 °C for 20 s. Three independent biological replicates per sample were performed. SiTUB was used as an internal reference gene to normalize the relative gene expression (Wei et al. 2013). The relative gene expression was calculated using the 2−∆∆Ct method (Livak and Schmittgen 2001). The primer sequences of the genes of DEPs for qRT-PCR are shown in Table 1S.

Statistical analysis

The data are presented as the mean ± standard deviation for three independent replicates. Data were analyzed statistically by one-way analysis of variance (ANOVA) with SPSS-17 statistical software (SPSS Inc., Chicago, IL, USA). Significant differences were determined at P < 0.05.


Genetic analysis of the leaf color mutant Siyl-1

To clarify the genetic background of the yellow-green leaf color trait in the mutant Siyl-1, we investigated the leaf color phenotype of the self-pollinated progeny of Siyl-1 (Fig. 1; Table 2S). There were three phenotypes in the self-pollinated progeny, i.e., light yellow color (named YY), yellow green color (Yy), and the normal green color (yy), with the expected separation ratio of 1 (YY): 2 (Yy): 1 (yy) using χ2 tests. Interestingly, the genotype YY would die 1 day after emergence. For the genotype Yy, the leaf color maintained yellow-green during the whole life cycle. The self-pollinated progeny of Yy presented the isolation of the leaf color trait. Meanwhile, the progeny of the genotype yy was normal with green leaf color and reflected the recessive homologous trait character (data not shown). Furthermore, we chose 1 line with Yy genotype and 3 lines with Yy genotype and performed the 3 crosses and the 3 reciprocal crosses (Table 2S). Phenotype investigation indicated that the leaf color trait within the F1 lines of the 3 crosses and the reciprocal crosses presented the expected ratio of 1 (yellow-green, Yy): 1 (green, yy) by χ2 tests. The genetic analysis results proved that the mutant Siyl-1 (Yy) is heterozygous, and the yellow leaf trait is controlled by an incompletely dominant nuclear gene named Siyl-1 in sesame.
Fig. 1

Three phenotypes of the yellow leaf mutant Siyl-1 in sesame. YY, light-yellow (lethal); Yy, yellow–green; and yy, normal green

Leaf chlorophyll content and cell ultrastructure variation in Siyl-1

In order to understand the cytogenetic characters of the leaf color mutant, we firstly evaluated the variation of the chlorophyll components of the above three genotypes at the cotyledon stage (Table 1). Compared with the normal content (0.51 mg g−1) in yy seedlings, the chlorophyll a content in YY and Yy seedlings was significantly reduced to 0.01 mg g−1 and 0.29 mg g−1, respectively. Meanwhile, the content of chlorophyll b also decreased from 0.18 mg g−1 (yy) to 0.02 mg g−1 (YY) and 0.08 mg g−1 (Yy), respectively. The total chlorophyll content of the three genotypes was 0.68 mg g−1 (yy), 0.37 mg g−1 (Yy), and 0.03 mg g−1 (YY), respectively. Compared with the wild genotype (yy), the contents of chlorophyll a, chlorophyll b, and the total chlorophyll in the Yy type decreased significantly (P < 0.05). However, the carotenoid content of Yy genotype was 0.09 mg g−1 and insignificant differed from that (0.10 mg g−1) of yy genotype.
Table 1

Chlorophyll content of the three genotypes of the Siyl-1 progeny during cotyledon expanding stage


Chlorophyll a content (mg g−1)

Chlorophyll b content (mg g−1)

Carotenoid content (mg g−1)

Total chlorophyll content (mg g−1)


0.01 ± 0.00c

0.02 ± 0.00c

0.05 ± 0.00b

0.03 ± 0.00c


0.29 ± 0.01b

0.08 ± 0.00b

0.09 ± 0.01a

0.37 ± 0.01b


0.51 ± 0.00a

0.18 ± 0.01a

0.10 ± 0.00a

0.68 ± 0.01a

YY: Homozygous mutant (lethal) with light-yellow leaf color. Yy: Heterozygous mutant with yellow-green leaf color. yy: Wild type with the normal green leaf color

The lowercase letters within the columns indicate the significant difference at P < 0.05

Meanwhile, we compared the ultrastructure characters of the leaf cells of the three genotypes (Fig. 2). As to the wild progeny (yy) of Siyl-1, the chloroplasts were normal with a spindle shape (Fig. 2a, b). The lamellar structure was clear and tightly folded. No starch grains presented, while a small amount of osmiophilic granules could be observed in leaf cells (Fig. 2a, b). For the genotype Yy, the chloroplasts were large in size with the thick spindle shape and cavities. In addition, gaps were observed in the stacking and folding lamellar structure. The chloroplast structure was abnormal and osmiophilic granules appeared (Fig. 2c, d). For YY genotype, the shape of chloroplasts changed from the convex lens-like shape to the circular shape. The lamellar structure was unclear and disordered and appeared as a loose strip. The thylakoid volume decreased, while the osmiophilic granules increased (Fig. 2e, f).
Fig. 2

Morphological comparison of chloroplast cells of three genotypes of Siyl-1. a and byy. c, dYy. e, fYY. Cm chloroplast outer membrane, Th thylakoid, Og osmiophilic globule, Gr grana, Me mesenchyme, Ve vesicle, Ct chloroplast. YY: homozygous mutant (lethal) with light-yellow leaf color. Yy: Heterozygous mutant with yellow-green leaf color. yy: wild type with the normal green leaf color

Comparative proteomics analysis of the three genotypes

To further explore the regulatory mechanism of leaf color trait in sesame, we performed a 2-DE of the proteins in the mutant leaves. The proteomic difference between the wild type (yy) and the two mutant types (YY and Yy) of Siyl-1 was compared and analyzed (Table 3S). A total of 518, 521, and 535 protein spots were obtained from the individuals of YY, Yy and yy, respectively. The isoelectric point of the protein spots mainly aggregated with the pH range from 4−7, and the molecular weight generally ranged from 10-110 kDa. Protein gel image of light-yellow (YY), yellow-green (Yy) and normal green (yy) phenotypes were analyzed in PDQuest 7.2 (Fig. 3). Compared with the wild type (yy), a total of 98 individual protein spots in the Yy and yy mutants exhibited the twofold up- or down-regulated variation (Fig. 4). Of which the expression abundance of the 81 proteins varied between the YY and the yy lines, and 41 expressed differently between the Yy and the yy lines.
Fig. 3

Identification of 98 protein spots according to 2-DE and MALDI-TOF-TOF MS analysis. The proteins are identified and compared among the three genotypes of the leaf color mutants during the seedling stage. aYY genotype; bYy genotype; cyy genotype. The DEPs are numbered in the images

Fig. 4

Venn diagram of the DEPs comparison of the YY and Yy mutant genotypes with the wild type

Furthermore, we digested the 98 protein spots with trypsin and performed the MALDI-TOF-TOF analysis. The 98 proteins were ultimately screened using the NCBInr (nonredundant) database (Fig. 3; Table 4S). The Kyoto Encyclopedia of Genes and Genomes (KEGG, analysis results reflected that the 98 proteins were grouped into 5 functional categories, i.e., photosynthesis and energy metabolism (82.7%), synthesis, folding and proteolysis (9.2%), detoxification and antioxidation (5.1%), respiration (2.0%), and defense-related protein (1.0%) (Fig. 5). The major group was involved in the photosynthesis bioprocess. Among the DEPs, there were 65 down-regulated light-reaction proteins (Table 4S), including oxygen-evolving enhancer protein (OEE), cytochrome b6-f complex (Cyt b6-f), iron-sulfur subunit, ferredoxin-NADP reductase (FNR), chlorophyll a–b binding protein (LHC), and photosystem I reaction center (PSI), etc.
Fig. 5

Functional group classification of the identified DEPs in sesame leaf color mutant Siyl-1. The functional classification of the DEPs is performed based on the KEGG pathway analysis dataset (

In addition, we compared the expression patterns of 98 DEPs in the three genotypes according to the heat map (Fig. 6). In the comparison of the YY and the yy lines, the number of down- and up-regulated proteins was 62 and 19, respectively. For the Yy and the yy lines, 16 down- and 25 up-regulated proteins were identified. More importantly, there were 11 common DEPs with the down-regulation coordination in the above comparison. Meanwhile, the other 11 common DEPs presented the up-regulated coordination in the two groups (Table 4S).
Fig. 6

Heat map representation of the 98 DEPs identified in the three genotypes of the mutant Siyl-1 progeny. Color scores are normalized by the log2 transformed protein abundance ratio of each spot. Red represents the increased protein abundance, and green represents the decreased protein abundance. YY: Homozygous mutant (lethal) with light-yellow leaf color. Yy: Heterozygous mutant with yellow-green leaf color. yy: Wild type with the normal green leaf color

Further analysis reflected that about half of the DEPs had different molecular masses or isoelectric points (Table 4S). For instance, PSBP1 possessed the four different molecular masses or isoelectric points. We further analyzed the protein–protein interactions and molecular functions of DEPs using STRING 9.0 (Figs. 1S, 2S). The results revealed that the DEPs formed a complicated interaction network, and most of the core interacting proteins were related to the photosynthesis and energy metabolism function (Table 5S). In addition, there were 21 proteins (i.e., ATPQ, PB, LHCA1, LHCA3, LHCA5, GS2, RPS1, FBA2, PSBO2, PSI-P, PETC, GAPA, PSAD-2, RBCL, PSBP-1, CYP38, cpHsc70-1, RPE, TRX-M4, CPN60A, and At5g06290) that individually interacted with more than 15 proteins. For example, the TRX-M4 (thioredoxin-M4) protein had the interaction relationship with 27 proteins. Similarly, GAPA exhibited the interaction with 27 proteins.

Expression profiles of genes involved in DEPs of Siyl-1

To study the relationship between protein and gene expression in the mutant Siyl-1, we matched the mRNA sequence with the DEPs using the genome data of sesame in the NCBI database ( A total of 22 genes were determined involved in photosynthesis and energy metabolism (Fig. 7). qRT-PCR showed that there were 2 different gene expression patterns, compared with the protein expression (Table 4S). A total of 7 (31.8%) genes had the same expression trend with their own proteins, such as OEE (Fig. 7a), transketolase (TKT) (B), Cyt b6-f (C), LHC 21 (G), LHC 8 (H), photosystem I reaction center subunit II (J), and thylakoid luminal 15 kDa protein (K). Meanwhile, the rest 15 genes (68.2%) presented the different trend from their own protein expression level.
Fig. 7

Expression profile analysis of the 22 genes encoding photosynthesis and energy metabolism proteins identified in Siyl-1. The bar in the column indicates the standard deviation of the transcription level. a Oxygen-evolving enhancer protein (OEE); b transketolase (TKT); c cytochrome b6-f complex iron-sulfur subunit (Cyt b6-f); d ferredoxin-NADP reductase (FNR); e chlorophyll a-b binding protein CP26 (LHC CP26); f chlorophyll a-b binding protein 13 (LHC 13); g chlorophyll a-b binding protein 21 (LHC 21); h chlorophyll a-b binding protein 8 (LHC 8); i chlorophyll a-b binding protein 6 (LHC 6); j photosystem I reaction center subunit II (PS I); k thylakoid lumenal 15 kDa protein; l protein curvature thylakoid; m ribulose bisphosphate carboxylase/oxygenase activase; n ribulosebis phosphate carboxylase small chain; o rubisco large subunit-binding protein subunit alpha; p rubisco large subunit-binding protein subunit beta; q glyceraldehyde-3-phosphate dehydrogenase (GAPA); r Ribose-5-phosphate isomerase (Rib-5-P); s triose phosphate isomerase (TPI); t fructose-bisphosphate aldolase (FBA); u malate dehydrogenase (ME); v biotin carboxylase. YY: Homozygous mutant (lethal) with light-yellow leaf color. Yy: Heterozygous mutant with yellow-green leaf color. yy: Wild type with the normal green leaf color


Leaf color mutation in plants is common. The mutated genes can be involved in the biosynthesis and degradation of chlorophyll in a direct or indirect manner or the photosynthesis of plants (Wu et al. 2018a, b). In this study, we analyzed the genetic, cytological, and proteomic characters of the leaf color mutant Siyl-1 in sesame for the first time.

Genetic analysis

Till now many leaf color mutants were found in rice (Huang et al. 2017a), barley (Qin et al. 2015), soybean (Zou et al. 2003), maize (Sawers et al. 2006), and wheat (Zhang et al. 2017). Most of the leaf color mutants are controlled by a single recessive nuclear gene (Zou et al. 2003; Ansari et al. 2013; Deng et al. 2014). For a few leaf color mutants in which the traits are controlled by a cytoplasmic gene, the mutants often exhibit the cytoplasmic inheritance and display a mosaic phenomenon in the developmental process (Chia et al. 1986). In our study, we identified that the yellow leaf trait in the mutant Siyl-1 was controlled by a nuclear gene and displayed incompletely dominance heredity. A yellow-green leaf mutant in wheat was found controlled by a novel single incompletely dominant gene (Y1718) on chromosome 2BS (Zhang et al. 2017). In maize, the olivine leaf phenotype also was controlled by a semi-dominant gene (ZmCHLI) encoding I subunit of magnesium chelatase (Mg-chelatase) (Sawers et al. 2006). In barley, the three semi-dominance mutations with leaf yellowing phenotype are caused by the deficiency of Xantha-hclo125, Xantha-hclo157, and Xantha-hclo161 gene, respectively (Hansson et al. 2002). In tobacco, a chlorina mutant was also controlled by a semi-dominant Sulfur gene encoding the subunit of Mg-chelatase (Fitzmaurice et al. 1999). And offspring of the above mentioned incompletely dominant yellow-green mutant had three different phenotypes: light-yellow (YY), yellow-green (Yy), and normal green (yy) leaf color, similar to our identified offspring phenotypes of yellow–green mutant Siyl-1 in sesame. Moreover, we further analyzed the mutation of above genes resulting in deficient of proteins in the yellow-green mutants, which further resulted in the inhibition of chlorophyll synthesis. However, the proteins have not been identified in our proteomics analysis results. The reason is most likely due to a new incompletely dominant yellow-green gene Siyl-1 identified in yellow-green leaf mutant of sesame and need to be studied further.

Analysis of pigment content and chloroplast morphology

The chloroplast is an essential organelle for photosynthesis in plants that contains chlorophyll and carotenoids. In the present study, the content of chlorophyll in the mutant was significantly lower than that in the wild type. This is a common phenomenon in leaf color mutants (Yang et al. 2011). In general, the morphological characteristics of the normal chloroplasts show an elliptic or approximately elliptic shape, and the size and the number are stable. In the Siyl-1 mutant, the shape and internal structure of the chloroplast changed dramatically (Fig. 2). These abnormal changes indicated that chloroplast development was restricted. The chlorophyll biosynthesis was abnormal, and leaf color was affected. The similar results also showed in other crops (Wu et al. 2014, 2018a, b; Miura et al. 2007). For example, the chloroplast is underdeveloped in a wheat yellow leaf color mutant (Wu et al. 2018a, b; Zhang et al. 2017). The morphology and structure of the chloroplasts are changed in Arabidopsis yellow variegated mutants caused by the loss of FtsH2 gene encoding ATP-dependent metalloprotease (Miura et al. 2007). In a rice chlorophyll-deficient mutant, the development of chloroplasts significantly delayed (Wu et al. 2014). Similar to the above leaf color mutants, the chloroplast development and the chlorophyll content in the mutant Siyl-1 was significantly affected. These results indicate that the yellow leaf color mutants in leaves are closely related to chloroplast development and chlorophyll synthesis.

Functional analysis of DEPs

Comparative proteomics analysis provides the qualitative and quantitative expression profile of the differential proteins and aids in developing a systematic comprehension of the underlying the process of regulation. In this study, a total of 98 DEPs were identified using the proteomics approach. The different protein expression profiles in the three genotypes of the Siyl-1 progeny revealed that the leaf color mutagenesis influenced the accumulation and expression of these proteins. In addition, approximately half of the DEPs were detected in multiple spots with different molecular masses or isoelectric points, which implied the existence of posttranslational modifications and isoforms (Zadraznik et al. 2013). 82.7% of the DEPs were involved in photosynthesis and energy metabolism. 76.5% of the DEPs were down-regulated in the YY/yy comparison, which lead to the variation of leaf chlorophyll content and cell structure in the mutant. In the present study, the down-regulated photosynthesis-related proteins (OEE, Cyt b6-f, FNR, LHC and PS I) mainly were involved in photosystem I and II and located on the photo membrane and played an important role in photosynthetic electron transport (Table 3S).

OEEs are components of the photosystem II (PSII) reaction center and promote the activation of oxygen, which can effectively organize the transfer of protons and electrons among the photosynthetic electron transport chain, receptors, and donors (Brudvig and Crabtree 1986). OEE1 is a manganese-stabilizing protein required for PSII core assembly/stability, and OEE2 is responsible for catalyzing the splitting of water (Yang et al. 2003; Yi et al. 2005). Based on our proteomic analysis, both OEE1 (1–7) and OEE2 (8–15) significantly decreased in YY, compared to wild type. These results indicated that the ability of transferring protons and electrons was strongly suppressed in Siyl-1.

The LHC is an important component of the light harvesting complex in the thylakoid membrane, because the protein can capture and transduce light energy, increasing the light energy capture efficiency and adjusting the light energy distribution (Xu et al. 2012). All the chlorophyll-binding proteins decreased in the NYC1-like mutant (Sato et al. 2018). The chlorina mutant of barley lacks chlorophyll b and the thylakoid membrane polypeptide (Bellemare et al. 1982). When stay-green is transiently overexpressed in the Arabidopsis mutant, both chlorophyll a and b are degraded, and an NYC1-deficient mutant did not degrade chlorophyll b and LHCII under the overexpression of SGR (Shimoda et al. 2016). In this study, the expression of the several chlorophyll a-b binding proteins (20–24) significantly decreased in YY, compared to wild type plants. Thus, we speculated that these different proteins be related to the ability of capturing light in Siyl-1.

The Cyt b6-f acts as a bridge to PSI (plastocyanin: GAPOR) via electron transfer (Haley and Bogorad 1989). The activity of the light-harvesting complex of photosystem II kinase is regulated by a Cyt b6-f component(s), which responds to the balance of electron flow from photosystem II to photosystem I via the plastoquinone pool (Gal et al. 1988). Thylakoids could not be phosphorylated under any experimental conditions in Cyt b6-f (Gal et al. 1987). FNR located in the thylakoid membrane can catalyze electron transfer from iron-sulfur, leading to NADP+ (Carrillo and Ceccarelli 2003). When the FNR gene is mutated, the chlorophyll level is also reduced in the mutant and a yellow-green leaf phenotype is exhibited (Li et al. 2015). In this study, the Cyt b6-f (16, 17), FNR (19), PSI protein (25) and thylakoid protein (26, 27) were down expressed significantly in YY, compared to wild type plants. The change in the thylakoid structure might cause the PSI protein deactivation, which further resulted in the loss of electron transfer function of Cyt b6-f.

TKT is a key enzyme in the Calvin cycle of photosynthesis and the pentose phosphate pathway in all organisms. The low amounts of TKT should repress the efficiency of the Calvin cycle and the pentose phosphate pathway, hindering the photosynthesis rate and resulting in plant death (Zhao et al. 2018). Thus, TKT plays an important role in plant defense and growth. However, there are different opinions about the function of TKT in the plant. Previous studies showed that TKL-overexpressed tobacco plants exhibited chlorosis and plant growth inhibition (Khozaei et al. 2015). Moreover, plant growth and the Chl contents did not changed in the TKL-overexpressed rice plants (Suzuki et al. 2017). At present, the reason for this difference is still unclear. Interestingly, the protein expression level of TKT increased in YY, which presented the similar protein expression profiles in Khozaei’s report. Thus, the above evidence proved that transketolase probably was indirectly related to photosynthesis. The mechanism of TKT protein expression, along with expression mechanisms of other similar proteins such as biotin carboxylase and triosephosphate isomerase (TPI), was worthy of investigation.

Other DEPs involved in the Calvin cycle, energy conversion, and synthesis, among others, had substantial differences in their expression profiles. For example, 1,5-diphosphate ribulose carboxylase/oxygenase (Rubisco), glyceraldehyde-3-phosphase dehydrogenase (GAPA), and adenosine triphosphate synthase (ATPase). The physiological and molecular mechanisms of these processes require further investigation.

Expression levels of genes related to DEPs

Leaf color mutants are valuable materials for understanding chloroplast development, chlorophyll biosynthesis and metabolism and photosynthesis, and gene functional analysis. The biosynthesis and expression of genes might be reprogrammed during the mutation (Liu et al. 2011). For instance, in a nuclear mutant of C. reinhardtii, the expression level of oxygen-evolving activity was reduced due to the absence of OEE2 polypeptides (Mayfield et al. 1987). The expression level of TKT was induced in TKT-overexpressed tobacco plants which exhibited phenotype of chlorosis and inhibition of plant growth (Khozaei et al. 2015). FNR does not influence the distribution of excitation energy between photosystem II and photosystem I, and it does not impact the occurrence of ‘light-state transitions’ (van Thor et al. 1999). Moreover, in Arabidopsis, the expression level of LHC also increased in the Mybs1 mutant, whereas the Mybs2 mutant exhibited the decreased expression character (Chen et al. 2016). In addition, expression profile of the Rubisco large subunit (RbcL) also increased in the pale plants, compared with the qRT-treated plants. The RbcL protein promotes the accumulation of Rubisco (Huang et al. 2015). For D. salina, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was reduced to 41.2% and 67.4% in the transformant G1 and G2 of the wild type, respectively (Jia et al. 2009). The mutant plant contained DEPs, and differential gene expression levels were evident between the wild type and the mutants. In this report, the expression trend was consistent with previous studies on OEE (Mayfield et al. 1987) and TKT (Khozaei et al. 2015). Expression level of GAPDH gene was opposite to the results shown in Jia et al. (2009). However, the expression of the chlorophyll a/b binding protein (Chen et al. 2016) and Rubisco (Huang et al. 2015) exhibited the increasing and decreasing trend, respectively. These results suggested that the greater influence of gene expression in mutation plants might resulted from the different mRNA expression level of each gene. In addition, our results also reflected that the transcription level and protein level of some genes showed an opposite trend in Yy/yy, compared to YY/yy. For example, LHC CP26, LHC 6, protein curvature thylakoid 1B, TPI, and FBA genes less abundant for protein expression but higher expression for translation levels. This reason for the less relevance between the mRNA and the protein level might be related to the post-translational modifications and/or regulation, such as protein phosphorylation, protein acetylation, and protein degradation (Pradet-Balade et al. 2001).


Genetic, cytological, and proteomic analyses of the sesame yellow leaf mutant, Siyl-1 (Yy), were performed for the first time. The yellow leaf mutation (Yy) is controlled by an incompletely dominant gene. The chlorophyll content dramatically decreased, and the ultrastructure of the leaf chloroplasts was significantly altered in Siyl-1, compared to the wild type. The proteomic analysis reflected the expression profiles of the 98 DEPs in the YY and Yy genotypes. Most of the DEPs were associated with the photosynthesis and chlorophyll biosynthesis pathways. In addition, among the identified proteins, the OEE, Cyt b6-f, CHL, PS I center, and thylakoid proteins were found down-regulated in the yellow-green leaf color mutant. The proteins have important functions in response to the morphogenesis of chloroplasts, photosynthetic electron transport, and light absorption. The changes in the biological processes may be associated with the yellow leaf phenotype. Overall, our findings provided the basis for further exploration underlying the regulation mechanisms of leaf color formation in sesame.



This work was supported by the Key Laboratory of Specific Oilseed Crops Genomics of Henan Province and the Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs. This work was financially supported by the China Agriculture Research System (CARS-14), Plan for Scientific Innovation Talent of Henan Province (184100510002, 151100111200), Importing the International Agricultural Sciences and Technology Program (2016-X05), and Henan Province Specific Professor Position Program (SPPP2016).

Author contributions

GT performed the experiments and wrote the manuscript draft. WS and TY guided the experiments and performed the data analysis. CJ, LC and WL participated in the proteomic data analysis. WY, LF, ZY and WD performed the experiments. ZH conceived of the experiments, revised the manuscript and determined the final version.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

13258_2019_876_MOESM1_ESM.tif (44 kb)
Supplementary material 1 (TIFF 45 kb)
13258_2019_876_MOESM2_ESM.tif (262 kb)
Supplementary material 2 (TIFF 262 kb)
13258_2019_876_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 17 kb)
13258_2019_876_MOESM4_ESM.docx (20 kb)
Supplementary material 4 (DOCX 20 kb)
13258_2019_876_MOESM5_ESM.docx (15 kb)
Supplementary material 5 (DOCX 16 kb)
13258_2019_876_MOESM6_ESM.doc (203 kb)
Supplementary material 6 (DOC 203 kb)
13258_2019_876_MOESM7_ESM.doc (99 kb)
Supplementary material 7 (DOC 99 kb)


  1. Allen KD, Duysen ME, Staehelin LA (1988) Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyll b-deficient CD3 mutant of wheat. J Cell Biol 107:907–919CrossRefPubMedGoogle Scholar
  2. Anilakumar KR, Pal A, Khanum F, Bawa AS (2010) Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds—an overview. Agric Conspec Sci 75:77–685Google Scholar
  3. Ansari MJ, Al-Ghamdi A, Kumar R, Usmani S, Al-Attal Y, Nuru A, Mohamed AA, Singh K, Dhaliwal HS (2013) Characterization and gene mapping of a chlorophyll-deficient mutant clm1 of Triticum monococcum L. Biol Plant 57:442–448CrossRefGoogle Scholar
  4. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  5. Awan MA, Konzak CF, Rutger JN, Nilan RA (1980) Mutagenic effects of sodium azide in rice. Crop Sci 20:663–668CrossRefGoogle Scholar
  6. Bellemare G, Bartlett SG, Chua NH (1982) Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley. J Biol Chem 257:7762–7767PubMedGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  8. Brudvig GW, Crabtree RH (1986) Mechanism for photosynthetic O2 evolution. Proc Nat Acad Sci USA 83:4586–4588CrossRefPubMedGoogle Scholar
  9. Carrillo N, Ceccarelli EA (2003) Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Eur J Biochem 270:1900–1915CrossRefPubMedGoogle Scholar
  10. Chen YS, Chao YC, Tseng TW, Huang CK, Lo PC, Lu CA (2016) Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis. Plant Mol Biol 93:299–311CrossRefPubMedGoogle Scholar
  11. Chia CP, Duesing JH, Watson JL, Guy R, Arntzen CJ (1986) Characterization of cytoplasmic mutants of Nicotiana tabacum with altered photosynthetic function. Curr Genet 10:469–479CrossRefGoogle Scholar
  12. Deng XJ, Zhang HQ, Wang Y, He F, Liu JL, Xiao X, Shu ZF, Li W, Wang GH, Wang GL (2014) Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One 9:e99564CrossRefPubMedPubMedCentralGoogle Scholar
  13. Falbel TG, Staehelin LA (1994) Characterization of a family of chlorophyll-deficient wheat (Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis. Plant Physiol 104:639–648CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fitzmaurice WP, Nguyen LV, Wernsman EA, Thompson WF, Conkling MA (1999) Transposon tagging of the sulfur gene of tobacco using engineered maize Ac/Ds elements. Genetics 153:1919–1928PubMedPubMedCentralGoogle Scholar
  15. Gal A, Shahak Y, Schuster G, Ohad I (1987) Specific loss of LHCII phosphorylation in the Lemna mutant 1073 lacking the cytochrome b6/f complex. FEBS Lett 221:205–210CrossRefGoogle Scholar
  16. Gal A, Schuster G, Frid D, Canaani O, Schwieger HG, Ohad I (1988) Role of the cytochrome b6-f complex in the redox-controlled activity of Acetabularia thylakoid protein kinase. J Biol Chem 263:7785–7791PubMedPubMedCentralGoogle Scholar
  17. Gustafsson Å (2010) The plastid development in various types of chlorophyll mutations. Hereditas 28:483–492CrossRefGoogle Scholar
  18. Haley J, Bogorad L (1989) A 4-kDa maize chloroplast polypeptide associated with the cytochrome b6-f complex: subunit 5, encoded by the chloroplast petE gene. Proc Natl Acad Sci USA 86:1534–1538CrossRefPubMedGoogle Scholar
  19. Hansson A, Willows RD, Roberts TH, Hansson M (2002) Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA + hexamers. Proc Natl Acad Sci USA 99:13944–13949CrossRefPubMedGoogle Scholar
  20. Huang C, Yu QB, Yuan XB, Li ZR, Wang J, Ye LS, Xu L, Yang ZN (2015) Rubisco accumulation is important for the greening of the fln2-4 mutant in Arabidopsis. Plant Sci 236:185–194CrossRefPubMedGoogle Scholar
  21. Huang R, Wang Y, Wang P, Li C, Xiao F, Chen N, Li N, Li C, Sun C, Li L, Chen R, Xu Z, Zhu J, Deng X (2017a) A single nucleotide mutation of IspF gene involved in the MEP pathway for isoprenoid biosynthesis causes yellow-green leaf phenotype in rice. Plant Mol Biol 96:5–16CrossRefPubMedGoogle Scholar
  22. Huang W, Ma HY, Huang Y, Li Y, Wang GL, Jiang Q, Wang F, Xiong AS (2017b) Comparative proteomic analysis provides novel insights into chlorophyll biosynthesis in celery under temperature stress. Physiol Plant 161:468–485CrossRefPubMedGoogle Scholar
  23. Jia Y, Xue L, Liu H, Li J (2009) Characterization of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene from the halotolerant alga Dunaliella salina and inhibition of its expression by RNAi. Curr Microbiol 58:426–431CrossRefPubMedGoogle Scholar
  24. Khozaei M, Fisk S, Lawson T, Gibon Y, Sulpice R, Stitt M, Lefebvre SC, Raines CA (2015) Overexpression of plastid transketolase in tobacco results in a thiamine auxotrophic phenotype. Plant Cell 27:432–447CrossRefPubMedPubMedCentralGoogle Scholar
  25. Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19:47–56CrossRefPubMedGoogle Scholar
  26. Li C, Hu Y, Huang R, Ma X, Wang Y, Liao T, Zhong P, Xiao F, Sun C, Xu Z, Deng X, Wang P (2015) Mutation of FdC2 gene encoding a ferredoxin-like protein with C-terminal extension causes yellow-green leaf phenotype in rice. Plant Sci 238:127–134CrossRefPubMedGoogle Scholar
  27. Li XJ, Ding WH, Chen XD, Li G, Jiang XL, Dong N, Xiao YJ, Ren CC, Gao XH, Ru ZG (2018a) Genetics and mapping of the novel leaf-colour mutant gene yglw-1 on wheat chromosome arm 2BS. Crop Pasture Sci 69:955–965CrossRefGoogle Scholar
  28. Li WX, Yang SB, Lu ZG, He ZC, Jin B (2018b) Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. Horticult Res 5:e00154Google Scholar
  29. Liu W, Kohlen W, Lillo A, den Camp RO, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang WC, Hooiveld GJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurts R (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–3865CrossRefPubMedPubMedCentralGoogle Scholar
  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  31. Ma H, Song L, Shu Y, Wang S, Niu J, Wang Z, Yu T, Gu W, Ma H (2012) Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. J Proteom 75:1529–1546CrossRefGoogle Scholar
  32. Mayfield SP, Rahire M, Frank G, Zuber H, Rochaix JD (1987) Expression of the nuclear gene encoding oxygen-evolving enhancer protein 2 is required for high levels of photosynthetic oxygen evolution in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 84:749–753CrossRefPubMedGoogle Scholar
  33. Miura E, Kato Y, Matsushima R, Albrecht V, Laalami S, Sakamoto W (2007) The balance between protein synthesis and degradation in chloroplasts determines leaf variegation in arabidopsis yellow variegated mutants. Plant Cell 19(4):1313–1328CrossRefPubMedPubMedCentralGoogle Scholar
  34. Murray DL, Kohorn BD (1991) Chloroplasts of Arabidopsis thaliana homozygous for the ch-1 locus lack chlorophyll b, lack stable LHCPII and have stacked thylakoids. Plant Mol Biol 16(1):71–79CrossRefPubMedGoogle Scholar
  35. Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233–240CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nasyrov YS (1987) Genetic control of photosynthesis and improving of crop productivity. Annu Rev Plant Physiol 29:215–237CrossRefGoogle Scholar
  37. Oda-Yamamizo C, Mitsuda N, Sakamoto S, Ogawa D, Ohme-Takagi M, Ohmiya A (2016) The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Sci Rep 6:23609CrossRefPubMedPubMedCentralGoogle Scholar
  38. Parker R, Flowers TJ, Moore AL, Harpham NV (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118CrossRefPubMedGoogle Scholar
  39. Pradet-Balade B, Boulmé F, Beug H, Müllner EW, Garcia-Sanz JA (2001) Translation control: bridging the gap between genomics and proteomics? TrendsBiochem Sci 26:225–229Google Scholar
  40. Qin D, Dong J, Xu F, Guo G, Ge S, Xu Q, Xu Y, Li M (2015) Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing. BMC Genom 16:838CrossRefGoogle Scholar
  41. Sang XC, Fang LK, Vanichpakorn Y, Ling YH, Du P, Zhao FM, Yang ZL, He GH (2010) Physiological character and molecular mapping of leaf-color mutant wyv1 in rice (Oryza sativa L.). Genes Genom 32:123–128CrossRefGoogle Scholar
  42. Sato T, Shimoda Y, Matsuda K, Tanaka A, Ito H (2018) Mg-dechelation of chlorophyll a by stay-green activates chlorophyll b degradation through expressing non-yellow coloring 1 in Arabidopsis thaliana. J Plant Physiol 222:94–102CrossRefPubMedGoogle Scholar
  43. Sawers RJ, Viney J, Farmer PR, Bussey RR, Olsefski G, Anufrikova K, Hunter CN, Brutnell TP (2006) The maize oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Mol Biol 60:95–106CrossRefPubMedGoogle Scholar
  44. Shimoda Y, Ito H, Tanaka A (2016) Arabidopsis STAY-GREEN, Mendel’s green cotyledon gene, encodes magnesium-dechelatase. Plant Cell 28:2147–2160CrossRefPubMedPubMedCentralGoogle Scholar
  45. Slattery RA, VanLoocke A, Bernacchi CJ, Zhu XG, Ort DR (2017) Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Front Plant Sci 8:549CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sugliani M, Abdelkefi H, Ke H, Bouveret E, Robaglia C, Caffarri S, Field B (2016) An ancient bacterial signaling pathway regulates chloroplast function to influence growth and development in Arabidopsis. Plant Cell 28:661CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sui D, Wang B, Shi S, He X (2015) Changes of protein expression during leaves of shrub willow clones in response to salt stress. Acta Physiol Plant 37:51–66CrossRefGoogle Scholar
  48. Suzuki Y, Kondo E, Makino A (2017) Effects of co-overexpression of the genes of rubisco and transketolase on photosynthesis in rice. Photosynth Res 131(3):281–289CrossRefPubMedGoogle Scholar
  49. Thornber JP, Highkin HR (2010) Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b. Eur J Biochem 41(1):109–116CrossRefGoogle Scholar
  50. Van Thor JJ, Gruters OW, Matthijs HC, Hellingwerf KJ (1999) Localization and function of ferredoxin: NADP(+) reductase bound to the phycobilisomes of Synechocystis. EMBO J 18:4128–4136CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wang H, Zhang H, Ma Q, Wei L, Ju M, Li C, Duan Y, Miao H (2017) Optimization of EMS mutagenesis condition and mutants identification in sesame. J Henan Agri Sci 46(1):36–41Google Scholar
  52. Wei L, Miao H, Zhao R, Han X, Zhang T, Zhang H (2013) Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR. Planta 237:873–889CrossRefPubMedGoogle Scholar
  53. Wu ZM, Zhang X, Wang JL, Wan JM (2014) Leaf chloroplast ultrastructure and photosynthetic properties of a chlorophyll-deficient mutant of rice. Photosynthetica 52:217–222CrossRefGoogle Scholar
  54. Wu H, Narong S, Xuyao A, Cong L, Hongfei F, Li C, Yi F, Daojie S, Lingli Z (2018a) Candidate genes for yellow leaf color in common wheat (Triticum aestivum L.) and major related metabolic pathways according to transcriptome profiling. Int J Mol Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wu H, Shi N, An X, Liu C, Fu H, Cao L, Feng Y, Sun D, Zhang L (2018b) Candidate genes for yellow leaf color in common wheat (Triticum aestivum L.) and major related metabolic pathways according to transcriptome profiling. Int J Mol Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Xu YH, Liu R, Yan L, Liu ZQ, Jiang SC, Shen YY, Wang XF, Zhang DP (2012) Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J Exp Bot 63:1095–1106CrossRefPubMedGoogle Scholar
  57. Yang EJ, Oh YA, Lee ES, Park AR, Cho SK, Yoo YJ, Park OK (2003) Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wall-associated kinase 1 in Arabidopsis. Biochem Biophys Res Commun 305:862–868CrossRefPubMedGoogle Scholar
  58. Yang D, Li S, Li M, Yang X, Wang W, Cao Z, Li W (2011) Physiological characteristics and leaf ultrastructure of a novel chlorophyll-deficient chd6 mutant of Vitis venifera cultured in vitro. J Plant Growth Regul 31:124–135CrossRefGoogle Scholar
  59. Yang C, Zhang YY, Fang ZY, Liu YM, Yang LM, Zhuang M, Sun PT (2014) Photosynthetic physiological characteristics and chloroplast ultrastructure of yellow leaf mutant YL-1 in cabbage. Acta Hortic Sin 41:1133–1144Google Scholar
  60. Yi X, McChargue M, Laborde S, Frankel LK, Bricker TM (2005) The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. J Biol Chem 280:16170–16174CrossRefPubMedGoogle Scholar
  61. Yu J, Zhang J, Zhao Q, Liu Y, Chen S, Guo H, Shi L, Dai S (2016) Proteomic analysis reveals the leaf color regulation mechanism in chimera hosta “Gold Standard” leaves. Int J Mol Sci 17:346CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zadraznik T, Hollung K, Egge-Jacobsen W, Meglic V, Sustar-Vozlic J (2013) Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteom 78:254–272CrossRefGoogle Scholar
  63. Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC (2006a) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337CrossRefPubMedGoogle Scholar
  64. Zhang H, Li J, Yoo J-H, Yoo S-C, Cho S-H, Koh H-J, Seo HS, Paek N-C (2006b) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62(3):325–337CrossRefPubMedGoogle Scholar
  65. Zhang L, Liu C, An X, Wu H, Feng Y, Wang H, Sun D (2017) Identification and genetic mapping of a novel incompletely dominant yellow leaf color gene, Y1718, on chromosome 2BS in wheat. Euphytica 213:141CrossRefGoogle Scholar
  66. Zhang H, Miao H, Ju M (2019) Potential for adaption to climate change through genomic breeding in sesame. In: Kole C (ed) Genomic designing of climate-smart oilseed crops. Springer Press, New York, pp 371–440CrossRefGoogle Scholar
  67. Zhao B, Huo J, Liu N, Zhang J, Dong J (2018) Transketolase is identified as a target of herbicidal substance alpha-terthienyl by proteomics. Toxins (Basel) 10:E41CrossRefGoogle Scholar
  68. Zou JJ, Singh RJ, Hymowitz T (2003) Association of the yellow leaf (y10) mutant to soybean chromosome 3. J Hered 94:352–355CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Tong-Mei Gao
    • 1
    • 2
  • Shuang-Ling Wei
    • 2
  • Jing Chen
    • 1
    • 2
  • Yin Wu
    • 2
  • Feng Li
    • 2
  • Li-Bin Wei
    • 2
  • Chun Li
    • 2
  • Yan-Juan Zeng
    • 2
  • Yuan Tian
    • 2
  • Dong-Yong Wang
    • 2
  • Hai-Yang Zhang
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
  2. 2.Henan Sesame Research CenterHenan Academy of Agricultural SciencesZhengzhouChina

Personalised recommendations