Advertisement

Genome-wide identification and characterization of the AMPK genes and their distinct expression patterns in response to air exposure in the Manila clam (Ruditapes philippinarum)

  • Jingtian Wang
  • Lei Fang
  • Qidi Wu
  • Dongdong Li
  • Zhongming HuoEmail author
  • Xiwu YanEmail author
Research Article
  • 80 Downloads

Abstract

Introduction

AMP-activated protein kinases (AMPK) are heterotrimeric complexes. The main upstream phosphorylase has AMP-dependent LKB1 and Ca2+-dependent CaMKK beta. AMPK also includes an auto-inhibitory domain and a region associated with beta and gamma subunits, which regulate a variety of cellular activities and energy metabolism. The increase in the ratio of AMP/ATP can stimulate the activation of AMPK. Once AMPK is activated, pathways to ATP consumption (e.g., fat, cholesterol, and protein synthesis) will be shut down. The pathway to ATP generation (e.g., oxidation of fat and glycolysis pathway) will be activated. AMPK genes have not been systematically characterized in marine invertebrates.

Methods

In this study, we identified and characterized three AMPK genes, AMPK-α, AMPK-β, and AMPK-γ, in the Manila clam (Ruditapes philippinarum). To gain insight into the role of AMPK genes during clam energy metabolism, quantitative real-time PCR was used to investigate the expression profiles in the different stages of clam development, in healthy adult tissues, and after air exposure at two different temperatures.

Results

Phylogenetic and protein structural analyses were conducted to determine the identity and evolutionary relationships of these genes. The structural features of the genes were relatively well-conserved, relative to the AMPK genes of other vertebrates. The expression of genes was significantly induced 3–48 h after air exposure.

Conclusinon

AMPK-α, AMPK-β and AMPK-γ are involved in clam energy metabolism. Increased expression levels of AMPK genes in the gill and intestine of Manila clam in response to air exposure implied a strong adaptability to the coastal environment.

Keywords

AMPK genes Air exposure Ruditapes philippinarum 

Notes

Acknowledgements

We thank the anonymous reviewers for their helpful comments on this work. This research was supported by a Grant from Chinese Ministry of Science and Technology through the National Key Research and Development Program of China (2018YFD0901400), National Science Foundation of China (41606133), General Project of Liaoning Provincial Education Department (L201604), Dalian high level talent innovation support program (2017RQ062), Liao Ning Revitalization Talents Program (XLYC1807271), and funds earmarked for Modern Agro-industry Technology Research System (CARS-49).

References

  1. Ali F, Nakamura K (1999) Effect of temperature and relative humidity on the tolerance of the japanese clam, ruditapes philippinarum (adams & reeve), to air exposure. Aquac Res 30(9):629–636CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefGoogle Scholar
  3. Apfeld J, O’Connor G, Mcdonagh T, Distefano PS, Curtis R (2004) The amp-activated protein kinase aak-2 links energy levels and insulin-like signals to lifespan in c elegans. Genes Dev 18(24):3004PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B et al (2010) Signaling kinase ampk activates stress-promoted transcription via histone h2b phosphorylation. Science 329(5996):1201–1205PubMedPubMedCentralCrossRefGoogle Scholar
  5. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC et al (2009) Ampk regulates energy expenditure by modulating nad + metabolism and sirt1 activity. Nature 458(7241):1056–1060.  https://doi.org/10.1038/nature07813 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M et al (2010) Interdependence of ampk and sirt1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11(3):213PubMedPubMedCentralCrossRefGoogle Scholar
  7. Carling, D. (2005). Amp-activated protein kinase: balancing the scales.Biochimie, 87(1), 87Google Scholar
  8. Carling D (2007) The role of the amp-activated protein kinase in the regulation of energy homeostasis. Novartis Found Symp 286:72–81PubMedCrossRefPubMedCentralGoogle Scholar
  9. Carling D, Zammit VA, Hardie DG (1987) A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 223(2):217–222PubMedCrossRefPubMedCentralGoogle Scholar
  10. Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating amp-activated protein kinase in intact cells? Eur J Biochem 229(2):558–565CrossRefGoogle Scholar
  11. Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA (1998) Functional domains of the α1 catalytic subunit of the amp-activated protein kinase. J Biol Chem 273(52):35347–35354PubMedCrossRefPubMedCentralGoogle Scholar
  12. Demers A, Guderley H (1994) Acclimatization to intertidal conditions modifies the physiological response to prolonged air exposure in mytilus edulis. Mar Biol 118(1):115–122CrossRefGoogle Scholar
  13. Garcia D, Shaw RJ (2017) Ampk: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66(6):789PubMedPubMedCentralCrossRefGoogle Scholar
  14. Giacomin M, Jorge MB, Bianchini A (2014) Effects of copper exposure on the energy metabolism in juveniles of the marine clam mesodesma mactroides. Aquat Toxicol 152(7):30–37PubMedCrossRefPubMedCentralGoogle Scholar
  15. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293(5538):2248PubMedCrossRefPubMedCentralGoogle Scholar
  16. Grahame Hardie D (2014) Amp-activated protein kinase: a key regulator of energy balance with many roles in human disease. J Intern Med 276(6):543PubMedCrossRefPubMedCentralGoogle Scholar
  17. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D et al (2007) An ampk-foxo pathway mediates longevity induced by a novel method of dietary restriction in c. elegans. Curr Biol Cb 17(19):1646PubMedCrossRefPubMedCentralGoogle Scholar
  18. Gui-Fan MA, Yang F, Guo WX, Zhao HL, Liang ZN, Yan XW (2013) Comparative tolerance to air exposure and freshwater immersion between two clams mactra chinensis and m. veneriformis. J Dalian Ocean Univ 28(1):44–48Google Scholar
  19. Ha J, Lee S (2010) Role of ampk in the regulation of cellular energy metabolism. J Korean Endocr Soc (1)Google Scholar
  20. Hardie DG, Sakamoto K (2006) Ampk: a key sensor of fuel and energy status in skeletal muscle. Physiology 21(21):48–60PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hégaret H, Silva PMD, Sunila I, Shumway SE, Dixon MS, Alix J et al (2009) Perkinsosis in the manila clam ruditapes philippinarum affects responses to the harmful-alga, prorocentrum minimum. J Exp Mar Biol Ecol 371(2):112–120CrossRefGoogle Scholar
  22. Hiong KC, Peh WY, Loong AM, Wong WP, Chew SF, Ip YK (2004) Exposure to air, but not seawater, increases the glutamine content and the glutamine synthetase activity in the marsh clam polymesoda expansa. J Exp Biol 207(26):4605–4614PubMedCrossRefPubMedCentralGoogle Scholar
  23. Hudson ER, Pan DA, James J, Lucocq JM, Hawley SA, Green KA et al (2003) A novel domain in amp-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol 13(10):861–866PubMedCrossRefPubMedCentralGoogle Scholar
  24. Jiang R, Carlson M (1997) The snf1 protein kinase and its activating subunit, snf4, interact with distinct domains of the sip1/sip2/gal83 component in the kinase complex. Mol Cell Biol 17(4):2099PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kahn BB, Alquier T, Carling D, Hardie DG (2005) Amp-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1(1):15–25PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kawabe S, Yokoyama Y (2010) Molecular cloning of calnexin and calreticulin in the pacific oyster crassostrea gigas and its expression in response to air exposure. Mar Genom 3(1):19–27CrossRefGoogle Scholar
  27. Kemp BE (2004) Bateman domains and adenosine derivatives form a binding contract. J Clin Investig 113(2):182PubMedCrossRefPubMedCentralGoogle Scholar
  28. Kueh CS, Chan KY (1985) Bacteria in bivalve shellfish with special reference to the oyster. J Appl Bacteriol 59(1):41–47PubMedCrossRefPubMedCentralGoogle Scholar
  29. Kumar S, Stecher G, Tamura K (2016) Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870PubMedCrossRefPubMedCentralGoogle Scholar
  30. Lemieux K, Konrad D, Klip A, Marette A (2003) The amp-activated protein kinase activator aicar does not induce glut4 translocation to transverse tubules but stimulates glucose uptake and p38 mitogen-activated protein kinases alpha and beta in skeletal muscle. Faseb J 17(12):1658PubMedCrossRefPubMedCentralGoogle Scholar
  31. Lobo (2012) Basic local alignment search tool (blast). J Mol Biol 215(3):403–410Google Scholar
  32. Matozzo V, Monari M, Foschi J, Papi T, Cattani O, Marin MG (2005) Exposure to anoxia of the clam chamelea gallina: I. Effects on immune responses. J Exp Mar Biol Ecol 325(2):163–174CrossRefGoogle Scholar
  33. Mcgee SL, Hargreaves M (2008) Ampk and transcriptional regulation. Front Biosci A J Virtual Libr 13(7):3022CrossRefGoogle Scholar
  34. Mihaylova MM, Shaw RJ (2011) The amp-activated protein kinase (ampk) signaling pathway coordinates cell growth, autophagy, & metabolism. Nat Cell Biol 13(9):1016PubMedPubMedCentralCrossRefGoogle Scholar
  35. Morton B (1983) 2-feeding and digestion in bivalvia. Mollusca 65-147Google Scholar
  36. Nicastro KR, Zardi GI, Mcquaid CD, Stephens L, Radloff S, Blatch GL (2010) The role of gaping behaviour in habitat partitioning between coexisting intertidal mussels. BMC Ecol 10(1):17PubMedPubMedCentralCrossRefGoogle Scholar
  37. Nystrom RA (1967) Spontaneous activity of clam intestinal muscle. Comp Biochem Physiol 21(3):601PubMedCrossRefPubMedCentralGoogle Scholar
  38. Oakhill JS, Scott JW, Kemp BE (2012) Ampk functions as an adenylate charge-regulated protein kinase. Trends Endocrinol Metab Tem 23(3):125–132PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ortmann C, Grieshaber MK (2003) Energy metabolism and valve closure behaviour in the asian clamcorbicula fluminea. J Exp Biol 206(22):4167–4178PubMedCrossRefPubMedCentralGoogle Scholar
  40. Place SP, Menge BA, Hofmann GE (2012) Transcriptome profiles link environmental variation and physiological response of mytilus californianus between pacific tides. Funct Ecol 26(1):144–155PubMedCrossRefPubMedCentralGoogle Scholar
  41. Polekhina G, Gupta A, Michell BJ, Van DB, Murthy S, Feil SC et al (2003) Ampk beta subunit targets metabolic stress sensing to glycogen. Curr Biol Cb 13(10):867–871PubMedCrossRefPubMedCentralGoogle Scholar
  42. Puppo J, Blasco J (1995) Partial characterization of alanine aminotransferase from gills and digestive gland of the bivalve ruditapes philippinarum. Comp Biochem Physiol B Biochem Mol Biol 111(1):99–109CrossRefGoogle Scholar
  43. Rodriguez AM, Elabd C, Amri EZ, Ailhaud G, Dani C (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87(1):125–128PubMedCrossRefPubMedCentralGoogle Scholar
  44. Sanz P (2008) Amp-activated protein kinase: structure and regulation. Curr Protein Pept Sci 9(5):478PubMedCrossRefPubMedCentralGoogle Scholar
  45. Sato R, Goldstein JL, Brown MS (1993) Replacement of serine-871 of hamster 3-hydroxy-3-methylglutaryl-coa reductase prevents phosphorylation by amp-activated kinase and blocks inhibition of sterol synthesis induced by atp depletion. Proc Natl Acad Sci USA 90(20):9261 (PMID:8415689) PubMedCrossRefPubMedCentralGoogle Scholar
  46. Schmittgen TD, Livak KJ (2008) Analyzing real-time pcr data by the comparative c(t) method. Nat Protoc 3(6):1101PubMedCrossRefPubMedCentralGoogle Scholar
  47. Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA et al (2004) Cbs domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Investig 113(2):274–284PubMedCrossRefPubMedCentralGoogle Scholar
  48. Stahmann N, Woods A, Carling D, Heller R (1995) Thrombin activates amp-activated protein kinase in endothelial cells via a pathway involving ca2 +/calmodulin-dependent protein kinase kinase β. Mol Cell Biol 370(1–2):5933–5945Google Scholar
  49. Tokizawa K, Yoda T, Uchida Y, Kanosue K, Nagashima K (2015) Estimation of the core temperature control during ambient temperature changes and the influence of circadian rhythm and metabolic conditions in mice. J Therm Biol 51(4):47–54PubMedCrossRefPubMedCentralGoogle Scholar
  50. Viollet B, Mounier R, Leclerc J, Yazigi A, Foretz M, Andreelli F (2007) Targeting amp-activated protein kinase as a novel therapeutic approach for the treatment of metabolic disorders. Diabetes Metab 33(6):395–402PubMedCrossRefPubMedCentralGoogle Scholar
  51. Wenwen W (2016) Effects of exposure in air on immune index and gene expression in ruditapesphilippinarum. Life Science and Technology Institute, Dalian Ocean University, Dalian (In Chinese) Google Scholar
  52. Wojtaszewski JF, Macdonald C, Nielsen JN, Hellsten Y, Hardie DG, Kemp BE et al (2003) Regulation of 5′amp-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284(4):E813PubMedCrossRefPubMedCentralGoogle Scholar
  53. Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C et al (2007) Structural basis for amp binding to mammalian amp-activated protein kinase. Nature 449(7161):496–500PubMedCrossRefPubMedCentralGoogle Scholar
  54. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D et al (2011) Structure of mammalian ampk and its regulation by adp. Nature 472(7342):230PubMedPubMedCentralCrossRefGoogle Scholar
  55. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E et al (2013) Structural basis of ampk regulation by small molecule activators. Nat Commun 4(1):3017PubMedPubMedCentralCrossRefGoogle Scholar
  56. Xiwu Y (2005) The culture biology and technology and selective breeding in Manila clam Ruditapes philippinarum. Institute of Oceanology, Chinese Academy of Sciences, Qingdao (In Chinese) Google Scholar
  57. Xu C, Li E, Xu Z, Wang S, Chen K, Wang X et al (2016) Molecular characterization and expression of amp-activated protein kinase in response to low-salinity stress in the pacific white shrimp litopenaeus vannamei. Comp Biochem Physiol B Biochem Mol Biol 198:79–90PubMedCrossRefPubMedCentralGoogle Scholar
  58. Xuwang Y, Peng C, Hai C, Wen J, Xiwu Y (2017) Physiological performance of the intertidal Manila clam (Ruditapes philippinarum) to long-term daily rhythms of air exposure. Sci Rep 7:41648CrossRefGoogle Scholar
  59. Yang F, Tan WM, Yan XW, Zhang GF (2012) Effects of exposure to air,immersion in fresh-water on growth and survival of juvenile manila clam ruditapes philippinarum. Fisheries Sci (In Chinese) Google Scholar
  60. Yu JH, Minchul C, Kyungil P, Sungwoo P (2010) Effects of anoxia on immune functions in the surf clam mactra veneriformis. Zool Stud 49(1):94–101Google Scholar
  61. Zhang H, Zhou Y, Fei XU (2009) Ampk, sirt1, and energy metabolism. Int J Pathol Clin Med (in chinese) Google Scholar
  62. Zhang L, Liu X, You L, Di Z, Wu H, Li L et al (2011) Metabolic responses in gills of manila clam ruditapes philippinarum exposed to copper using nmr-based metabolomics. Mar Environ Res 72(1):33–39PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Genetics Society of Korea 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life ScienceDalian Ocean UniversityDalian CityChina

Personalised recommendations