Genes & Genomics

, Volume 40, Issue 6, pp 657–668 | Cite as

Complete genome sequence of the sesame pathogen Ralstonia solanacearum strain SEPPX 05

  • Xinshen Li
  • Xiaomei Huang
  • Gongyou Chen
  • Lifang Zou
  • Lingen Wei
  • Juling HuaEmail author
Research Article


Ralstonia solanacearum is a soil-borne phytopathogen associated with bacterial wilt disease of sesame. R. solanacearum is the predominant agent causing damping-off from tropical to temperate regions. Because bacterial wilt has decreased the sesame industry yield, we sequenced the SEPPX05 genome using PacBio and Illumina HiSeq 2500 systems and revealed that R. solanacearum strain SEPPX05 carries a bipartite genome consisting of a 3,930,849 bp chromosome and a 2,066,085 bp megaplasmid with 66.84% G+C content that harbors 5,427 coding sequences. Based on the whole genome, phylogenetic analysis showed that strain SEPPX05 is grouped with two phylotype I strains (EP1 and GMI1000). Pan-genomic analysis shows that R. solanacearum is a complex species with high biological diversity and was able to colonize various environments during evolution. Despite deletions, insertions, and inversions, most genes of strain SEPPX05 have relatively high levels of synteny compared with strain GMI1000. We identified 104 genes involved in virulence-related factors in the SEPPX05 genome and eight absent genes encoding T3Es of GMI1000. Comparing SEPPX05 with other species, we found highly conserved secretion systems central to modulating interactions of host bacteria. These data may provide important clues for understanding underlying pathogenic mechanisms of R. solanacearum and help in the control of sesame bacterial wilt.


Ralstonia solanacearum Genome sequencing Genome comparison Virulence 



We thank Prof. Xiangmin Li (Institute of Plant Protect, Jiangxi Academy of Agricultural Sciences, China) for reviewing the manuscript and giving valuable suggestions and Zoe Rouy for genomes integration of strain SEPPX05 into the MaGe platform.

Author contributions

XL performed annotation of the genome. XL and JL designed the experiments and wrote the paper. XH, GC, LZ and LW contributed to data analysis. XL and XH isolated the R. solanacearum strain SEPPX05. XL and JL revised the manuscript. All of the authors read and approved the final manuscript.


This work were supported by National Natural Science Foundation of China (NSFC, Grant Number 31,360,428), Key Technology Research and Development Program Jiangxi Proveince (Grant Number: 20121BBF60015), and Innovation Fund for the Doctoral Program of Jiangxi Academy of Agricultural Sciences (Grant Number: 20142C13S006). National Industry Technical System of Secondary Centre of Oil Crops (Grant Number: CARS-14).

Compliance with ethical standards

Competing interests

Xinshen Li declares that he has no conflict of interest. Xiaomei Huang declares that she has no conflict of interest. Gongyou Chen declares that he has no conflict of interest. Lifang Zou declares that she has no conflict of interest. Lingen Wei declares that he has no conflict of interest. Juling Hua declares that she has no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human or animals subjects performed by any of the authors.

Ethical approval

All the experiments were performed according to the experiment security regulations of Jiangxi Academy of Agricultural Sciences (JAAS), and approved by the biosafety committee in JAAS.

Supplementary material

13258_2018_667_MOESM1_ESM.pdf (28 kb)
Supplementary material 1 (PDF 27 KB)
13258_2018_667_MOESM2_ESM.pdf (52 kb)
Supplementary material 2 (PDF 51 KB)
13258_2018_667_MOESM3_ESM.xls (25 kb)
Supplementary material 3 (XLS 25 KB)
13258_2018_667_MOESM4_ESM.xls (50 kb)
Supplementary material 4 (XLS 50 KB)


  1. Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414CrossRefPubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ansari MM, Ram T (1987) Bacterial wilt of sesamum caused by Pseudomonas solanacearum, a new record for Andaman and Nicobar Islands. Indian Phytopathol 40:236Google Scholar
  4. Ashri A (1989) Sesame. In: Röbbelen G, Downey RK, Ashri A (eds) Oil crops of the world. McGraw-Hill, New York, pp 375–387Google Scholar
  5. Bocsanczy AM, Achenbach UC, Mangravita-Novo A, Chow M, Norman DJ (2014) Proteomic comparison of Ralstonia solanacearum strains reveals temperature dependent virulence factors. BMC Genom 15:280CrossRefGoogle Scholar
  6. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I et al (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown DG, Swanson JK, Allen C (2007) Two host-induced Ralstonia solanacearum genes, acrA and dinF, encode multidrug efflux pumps and contribute to bacterial wilt virulence. Appl Environ Microbiol 73:2777–2786CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602CrossRefPubMedPubMedCentralGoogle Scholar
  9. Castillo JA, Greenberg JT (2007) Evolutionary dynamics of Ralstonia solanacearum. Appl Environ Microbiol 73:1225–1238CrossRefPubMedGoogle Scholar
  10. Chellemi DO, Olson SM, Mitchell DJ, Secker I, McSorley R (1997) Adaptation of soil solarization to the integrated management of soilborne pests of tomato under humid conditions. Phytopathology 87:250–258CrossRefPubMedGoogle Scholar
  11. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE et al (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569CrossRefPubMedGoogle Scholar
  12. Cianciotto NP (2005) Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13:581–588CrossRefPubMedGoogle Scholar
  13. Coll NS, Valls M (2013) Current knowledge on the Ralstonia solanacearum type III secretion system. Microb Biotechnol 6:614–620PubMedPubMedCentralGoogle Scholar
  14. Collonnier C, Mulya K, Fock I, Mariska I, Servaes A, Vedel F, Siljak-Yakovlev S, Souvannavong V, Ducreux G, Sihachakr D (2001) Source of resistance against Ralstonia solanacearum in fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Plant Sci 160:301–313CrossRefPubMedGoogle Scholar
  15. Cornelis GR, Van Gijsegem F (2000) Assembly and function of type III secretory systems. Ann Rev Microbiol 54:735–774CrossRefGoogle Scholar
  16. Delcher AL, Salzberg SL, Phillippy AM (2003) Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinform 10–13Google Scholar
  17. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679CrossRefPubMedPubMedCentralGoogle Scholar
  18. Denny TP (1995) Involvement of bacterial polysaccharides in plant pathogenesis. Annu Rev Phytopat 33:173–197CrossRefGoogle Scholar
  19. Deslandes L, Genin S (2014) Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms. Curr Opin Plant Biol 20:110–117CrossRefPubMedGoogle Scholar
  20. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024–8029CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fegan M, Prior P (2005) How complex is the Ralstonia solanacearum species complex. APS Press, Bethesda, pp 449–461Google Scholar
  22. Fichot EB, Norman RS (2013) Microbial phylogenetic profiling with the Pacific Biosciences sequencing platform. Microbiome 1:e10CrossRefGoogle Scholar
  23. Flores-Cruz Z, Allen C (2011) Necessity of oxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum. Appl Environ Microbiol 77:6426–6432CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fraser-Liggett CM (2005) Insights on biology and evolution from microbial genome sequencing. Genome Res 15:1603–1610CrossRefPubMedGoogle Scholar
  25. Garg RP, Huang J, Yindeeyoungyeon W, Denny TP, Schell MA (2000) Multicomponent transcriptional regulation at the complex promoter of the exopolysaccharide I biosynthetic operon of Ralstonia solanacearum. J Bacteriol 182:6659–6666CrossRefPubMedPubMedCentralGoogle Scholar
  26. Genin S, Boucher C (2004) Lessons learned from the genome analysis of Ralstonia solanacearum. Annu Rev Phytopathol 42:107–134CrossRefPubMedGoogle Scholar
  27. Gillings MR, Fahy P (1994) Genomic fingerprinting: towards a unified view of the Pseudomonas solanacearum species complex. Cab International, OxfordshireGoogle Scholar
  28. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35(suppl_2):W52-W57PubMedCentralGoogle Scholar
  29. Guarischi-Sousa R, Puigvert M, Coll NS, Siri MI, Pianzzola MJ, Valls M, Setubal JC (2016) Complete genome sequence of the potato pathogen Ralstonia solanacearum UY031. Stand Genomic Sci 11:7CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hayward AC (1960) Characteristics of Pseudomonas solanacearum. J Appl Microbiol 27:265–277Google Scholar
  31. Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87CrossRefPubMedGoogle Scholar
  32. He LY (1983) Characteristics of strains of Pseudomonas solanacearum from China. Plant dis 67:1357–1361CrossRefGoogle Scholar
  33. He LY, Hua JY (1983) Epidemiology and control of bacterial wilt of plants in China. Acta Phytophy Sin 9:8–10 (In Chinese)Google Scholar
  34. Henderson IR, Nataro JP (2001) Virulence functions of autotransporter proteins. Infect Immun 69:1231–1243CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hua JL, Hu BS, Li XM, Huang RR, Liu GR (2012) Identification of the pathogen causing bacterial wilt of sesame and its biovars. Acta Phytophy Sin 39:39–44 (In Chinese)Google Scholar
  36. Jayaraman J, Choi S, Prokchorchik M, Choi DS, Spiandore A, Rikkerink EH, Templeton MD, Segonzac C, Sohn KH (2017) A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Sci Rep 7:3557CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kamal-Eldin A, Appleqvist L (1994) Variation in the compositions of sterols, tocopherols and lignans in seed oils from four Sesamum species. J Am Oil Chem Soc 71:149–156CrossRefGoogle Scholar
  38. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109-114CrossRefGoogle Scholar
  39. Kang Y, Liu H, Genin S, Schell MA, Denny TP (2002) Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 46:427–437CrossRefPubMedGoogle Scholar
  40. Kapoor S, Parmar S, Yadav M, Chaudhary D, Sainger M, Jaiwal R, Jaiwal P (2014) Sesame (Sesamum indicum L.). Methods Mol Biol 1224:37–45CrossRefGoogle Scholar
  41. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351CrossRefPubMedGoogle Scholar
  42. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30:693–700CrossRefPubMedPubMedCentralGoogle Scholar
  43. Laferriere LT, Helgeson JP, Allen C (1999) Fertile Solanum tuberosum + S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia solanacearum. Theor Appl Genet 98:1272–1278CrossRefGoogle Scholar
  44. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103CrossRefPubMedGoogle Scholar
  46. Li Z, Wu S, Bai X, Liu Y, Lu J, Liu Y, Xiao B, Lu X, Fan L (2011) Genome sequence of the tobacco bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 193:6088–6089CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li P, Wang D, Yan J, Zhou J, Deng Y, Jiang Z, Cao B, He Z, Zhang L (2016) Genomic analysis of phylotype I strain EP1 reveals substantial divergence from other strains in the Ralstonia solanacearum species complex. Front Microbiol 7:1719PubMedPubMedCentralGoogle Scholar
  48. Lindgren PB (1997) The role of hrp genes during plant-bacterial interactions. Annu Rev Phytopathol 35:129–152CrossRefPubMedGoogle Scholar
  49. Liu H, Zhang S, Schell MA, Denny TP (2005) Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. Mol Plant Microbe Interact 18:1296–1305CrossRefPubMedGoogle Scholar
  50. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of tRNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefPubMedPubMedCentralGoogle Scholar
  51. Macho AP, Guidot A, Barberis P, Beuzón CR, Genin S (2010) A competitive index assay identifies several Ralstonia solanacearum type III effector mutant strains with reduced fitness in host plants. Mol Plant Microbe Interact 23:1197–1205CrossRefPubMedGoogle Scholar
  52. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629CrossRefPubMedGoogle Scholar
  53. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594CrossRefPubMedGoogle Scholar
  54. Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S (2013) Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genom 14:e859CrossRefGoogle Scholar
  55. Peng Z, Hu Y, Xie J, Potnis N, Akhunova A, Jones J, Liu Z, White FF, Liu S (2016) Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens. BMC Genom 17:21CrossRefGoogle Scholar
  56. Poueymiro M, Genin S (2009) Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant. Curr Opin Microbiol 12:44–52CrossRefPubMedGoogle Scholar
  57. Poueymiro M, Cunnac S, Barberis P, Deslandes L, Peeters N, Cazale-Noel AC, Boucher C, Genin S (2009) Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. Mol Plant Microbe Interact 22:538–550CrossRefPubMedGoogle Scholar
  58. Pradhanang PM, Elphinstone JG, Fox RT (2000) Sensitive detection of Ralstonia solanacearum in soil: a comparison of different detection techniques. Plant Pathol 49:414–422CrossRefGoogle Scholar
  59. Prior P, Ailloud F, Dalsing BL, Remenant B, Sanchez B, Allen C (2016) Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genom 17:90CrossRefGoogle Scholar
  60. Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact 24:751–757CrossRefPubMedGoogle Scholar
  61. Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E, Allen C, Fegan M, Pruvost O, Elbaz M, Calteau A et al (2010) Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genom 11:379CrossRefGoogle Scholar
  62. Remenant B, de Cambiaire JC, Cellier G, Jacobs JM, Mangenot S, Barbe V, Lajus A, Vallenet D, Medigue C, Fegan M et al (2011) Ralstonia syzygii, the Blood Disease Bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles. PLoS ONE 6:e24356CrossRefPubMedPubMedCentralGoogle Scholar
  63. Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L, Kappler U (2014) Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov. R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int J Syst Evol Microbiol 64:3087–3103CrossRefPubMedGoogle Scholar
  64. Saharan G, Mehta N, Sangwan M (2005) Diseases of oilseed crops. Indus, New DelhiGoogle Scholar
  65. Saile E, McGarvey JA, Schell MA, Denny TP (1997) Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87:1264–1271CrossRefPubMedGoogle Scholar
  66. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502CrossRefPubMedGoogle Scholar
  67. Schell MA (2000) Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu Rev Phytopathol 38:263–292CrossRefPubMedGoogle Scholar
  68. Schneider P, Jacobs JM, Neres J, Aldrich CC, Allen C, Nett M, Hoffmeister D (2009) The global virulence regulators VsrAD and PhcA control secondary metabolism in the plant pathogen Ralstonia solanacearum. ChemBioChem 10:2730–2732CrossRefPubMedGoogle Scholar
  69. Sole M, Popa C, Mith O, Sohn KH, Jones JD, Deslandes L, Valls M (2012) The awr gene family encodes a novel class of Ralstonia solanacearum type III effectors displaying virulence and avirulence activities. Mol Plant Microbe Interact 25:941–953CrossRefPubMedGoogle Scholar
  70. Soto MJ, Sanjuan J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology 152:3167–3174CrossRefPubMedGoogle Scholar
  71. Taghavi M, Hayward C, Sly L, Fegan M (1996) Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum, Pseudomonas syzygii, and the blood disease bacterium of banana based on 16S rRNA gene sequences. Int J Syst Bacteriol 46:10–15CrossRefPubMedGoogle Scholar
  72. Tans-Kersten J, Huang H, Allen C (2001) Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol 183:3597–3605CrossRefPubMedPubMedCentralGoogle Scholar
  73. Tans-Kersten J, Brown D, Allen C (2004) Swimming motility, a virulence trait of Ralstonia solanacearum, is regulated by FlhDC and the plant host environment. Mol Plant Microbe Interact 17:686–695CrossRefPubMedGoogle Scholar
  74. Tasset C, Bernoux M, Jauneau A, Pouzet C, Brière C, Kieffer-Jacquinod S, Rivas S, Marco Y, L. D (2010) Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog 6:e1001202CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tatusov RL (1997) A genomic perspective on protein families. Science 278:631–637CrossRefPubMedGoogle Scholar
  76. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36CrossRefPubMedPubMedCentralGoogle Scholar
  77. Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477CrossRefPubMedGoogle Scholar
  78. Tseng TT, Tyler BM, Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9(Suppl_1):S2CrossRefPubMedPubMedCentralGoogle Scholar
  79. Van Sluys MA, Monteiro-Vitorello CB, Camargo LE, Menck CF, Da Silva AC, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ (2002) Comparative genomic analysis of plant-associated bacteria. Annu Rev Phytopathol 40:169–189CrossRefPubMedGoogle Scholar
  80. Wei CF, Kvitko BH, Shimizu R, Crabill E, Alfano JR, Lin NC, Martin GB, Huang HC, Collmer A (2007) A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J 51:32–46CrossRefPubMedGoogle Scholar
  81. Wicker E, Lefeuvre P, de Cambiaire JC, Lemaire C, Poussier S, Prior P (2011) Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA. ISME J 6:961–974CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wu W, Huang H, Ling Z, Yu Z, Jiang Y, Liu P, Li X (2015) Genome sequencing reveals mechanisms for heavy metal resistance and polycyclic aromatic hydrocarbon degradation in Delftia lacustris strain LZ-C. Ecotoxicology 25:234–247CrossRefPubMedGoogle Scholar
  83. Xu J, Zheng HJ, Liu L, Pan ZC, Prior P, Tang B, Xu JS, Zhang H, Tian Q, Zhang LQ et al (2011) Complete genome sequence of the plant pathogen Ralstonia solanacearum strain Po82. J Bacteriol 193:4261–4262CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov. Microbiol Immunol 39:897–904CrossRefPubMedGoogle Scholar
  85. Yao J, Allen C (2006) Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 188:3697–3708CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39(suppl_2):W347–W352CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Pathol 152:537–542Google Scholar

Copyright information

© The Genetics Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Plant ProtectionJiangxi Academy of Agricultural SciencesNanchangChina
  2. 2.Agricultural Service Training and Development DepartmentJiangxi Biotech Vocational CollegeNanchangChina
  3. 3.Lab for Molecular Plant-Pathogen Interactions, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
  4. 4.Soil and Fertilizer and Resources and Environment InstituteJiangxi Academy of Agricultural Sciences, National Engineering and technology Research Center for Red Soil ImprovementNanchangChina

Personalised recommendations