Genes & Genomics

, Volume 39, Issue 9, pp 987–995 | Cite as

Two mitogenomes in Gruiformes (Amaurornis akool/A. phoenicurus) and the phylogenetic placement of Rallidae

  • Jie Gong
  • Ruoping Zhao
  • Qingrong Huang
  • Xiaomin Sun
  • Ling HuangEmail author
  • Meidong JingEmail author
Research Article


Rallidae, with 34 genera including 142 species, is the largest family in the Gruiformes, the phylogenetic placement of this family was still in debate. The complete mitochondrial genomes (mitogenomes), with many advantageous characters, have become popular markers in phylogenetic analyses. We sequenced the mitogenomes of brown crake (Amaurornis akool) and white-breasted waterhen (Amaurornis phoenicurus), analyzed the genomic characters of mitogenomes in Rallidae, and explored the phylogenetic relationships between Rallidae and other four families in Gruiformes based on mitogenome sequences of 32 species with Bayesian method. The mitogenome of A. akool/A. phoenicurus was 16,950/17,213 bp in length, and contained 37 genes typical to avian mitogenomes and one control region, respectively. The genomic characters of mitogenomes in Rallidae were similar. The phylogenetic results indicated that, among five families, Rallidae had closest relationship with Heliornithidae, which formed a sister taxa to Gruidae, while Rhynochetidae located in the basal lineage. Within Rallidae, Rallina was ancestral clade. Gallirallus & Rallus and Aramides were closely related, Gallicrex & Amaurornis and Fulica & Gallinula had close relationships, and these two taxa formed a sister clade to Porphyrio & Coturnicops. Our phylogenetic analyses provided solid evidence for the phylogenetic placement of Rallidae and the evolutionary relationships among different genus within this family. In addition, the mitogenome data presented here provide useful information for further molecular systematic investigations on Gruiformes as well as conservation biology research of these species.


Amaurornis akool A. phoenicurus Rallidae Mitochondrial genome Phylogenetic placement 



This work was supported by the Natural Scientific Foundation of China (No. 31371252) and the open project from the State Key Laboratory of Genetic Resource and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (GREKF15-04).

Compliance with ethical standards

Conflict of interest

Jie Gong, Ruoping Zhao, Qingrong Huang, Xiaomin Sun, Ling Huang and Meidong Jing declares that they have no conflict of interest.

Research involving animal and human rights

This article does not contain any studies with human subjects by any of the authors. The animal experiment throughout the study was conducted according to the Chinese Ministry of Science and Technology Guiding Directives for Humane Treatment of Laboratory Animals.

Supplementary material

13258_2017_562_MOESM1_ESM.doc (64 kb)
Supplementary material 1 (DOC 63 KB)
13258_2017_562_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 KB)
13258_2017_562_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 15 KB)
13258_2017_562_MOESM4_ESM.docx (17 kb)
Supplementary material 4 (DOCX 16 KB)
13258_2017_562_MOESM5_ESM.docx (16 kb)
Supplementary material 5 (DOCX 16 KB)


  1. Boore JL (2001) Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura. Mol Biol Evol 18:1413–1416CrossRefPubMedGoogle Scholar
  2. Brown WM, George MJ, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bucheli SR, Wenzel J (2005) Gelechioidea (Insecta: Lepidoptera) systematics: a reexamination using combined morphology and mitochondrial DNA data. Mol Phylogenet Evol 35:380–394CrossRefPubMedGoogle Scholar
  4. Campbell V, Lapointe FJ (2011) Retrieving a mitogenomic mammal tree using composite taxa. Mol Phylogenet Evol 58:149–156CrossRefPubMedGoogle Scholar
  5. Castro JA, Picornell A, Ramon M (1999) Mitochondrial DNA: a tool for populational genetics studies. Int Microbiol 1:327–332Google Scholar
  6. Ciach M (2007) Interference competition between Rails and Crakes (Rallidae) during foraging in the post-breeding season. Turk J Zool 31:161–163Google Scholar
  7. Dong C, Xu J, Wang B, Feng J, Jeney Z, Sun X, Xu P (2015) Phylogeny and evolution of multiple common carp (Cyprinus carpio L.) populations clarified by phylogenetic analysis based on complete mitochondrial genomes. Mar Biotechnol 17:565–575CrossRefPubMedGoogle Scholar
  8. Douzery E, Randi E (1997) The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content. Mol Biol Evol 14:1154–1166CrossRefPubMedGoogle Scholar
  9. Fain MG, Krajewski C, Houde P (2007) Phylogeny of “core Gruiformes” (Aves: Grues) and resolution of the Limpkin–Sungrebe problem. Mol Phylogenet Evol 43:515–529CrossRefPubMedGoogle Scholar
  10. Garcíar JC, Gibb GC, Trewick SA (2014) Eocene diversification of crown group rails (Aves: Gruiformes: Rallidae). PLoS ONE 9:e109635CrossRefGoogle Scholar
  11. Gibb GC, Kardailsky O, Kimball RT, Braun EL, Penny D (2007) Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol Biol Evol 24:269–280CrossRefPubMedGoogle Scholar
  12. Gibson A, Gowri-Shankar V, Higgs PG, Rattray M (2005) A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Mol Biol Evol 22:251–264CrossRefPubMedGoogle Scholar
  13. Hallast P, Delser PM, Batini C, Zadik D, Rocchi M, Schempp W, Tylersmith C, Jobling MA (2016) Great ape Y Chromosome and mitochondrial DNA phylogenies reflect subspecies structure and patterns of mating and dispersal. Genome Res 26:427–439CrossRefPubMedPubMedCentralGoogle Scholar
  14. Haring E, Kruckenhauser L, Gamauf A, Riesing MJ, Pinsker W (2001) The complete sequence of the mitochondrial genome of Buteo buteo (Aves, Accipitridae) indicates an early split in the phylogeny of raptors. Mol Biol Evol 18:1892–1904CrossRefPubMedGoogle Scholar
  15. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. Plos Biol 2:e312CrossRefPubMedPubMedCentralGoogle Scholar
  16. Houde P, Cooper A, Leslie E, Strand AE, Montaño GA (1997) Phylogeny and evolution of 12 S rDNA in Gruiformes (Aves). In: Mindell DP (ed) Avian molecular evolution and systematics. Academic Press, San Diego, pp 121–158CrossRefGoogle Scholar
  17. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  18. Jenkins RKB (1999) The breeding biology of the Water Rail in Britain and Ireland. Bird Study 46:305–308CrossRefGoogle Scholar
  19. Jenkins RKB, Ormerod SJ (2002) Habitat preferences of breeding Water Rail Rallus aquaticus: Surveys using broadcast vocalizations during the breeding season found that Water Rail were significantly more abundant at sites that contained the most wet reed Phragmites sp. Bird Study 49:2–10CrossRefGoogle Scholar
  20. Jenkins RKB, Buckton ST, Ormerod SJ (1995) Local movements and population density of Water Rails Rallus aquaticus in a small inland reedbed. Bird Study 42:82–87CrossRefGoogle Scholar
  21. Kan XZ, Li XF, Zhang LQ, Chen L, Qian CJ, Zhang XW, Wang L (2010) Characterization of the complete mitochondrial genome of the Rock pigeon, Columba livia (Columbiformes: Columbidae). Genet Mol Res 9:1234–1249CrossRefPubMedGoogle Scholar
  22. Krajewski C, Sipiorski JT, Anderson FE (2014) Complete mitochondrial genome sequences and the phylogeny of cranes (Gruiformes: Gruidae). Auk 127:440–452CrossRefGoogle Scholar
  23. Marchant S, Higgins PJ, Considine M (1993) Raptors to lapwings. Oxford University Press, Melbourne, pp 818–827Google Scholar
  24. Mayr G (2006) A rail (Aves, Rallidae) from the early Oligocene of Germany. Ardea 94:23–31Google Scholar
  25. Mcminn M, Palmer M, Alcover JA (2005) A new species of rail (Aves: Rallidae) from the upper pleistocene and holocene of eivissa (Pityusic Islands, Western Mediterranean). Ibis 147:706–716CrossRefGoogle Scholar
  26. Mindell DP, Sorenson MD, Dimcheff DE (1998) An Extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. Mol Biol Evol 15:1568–1571CrossRefPubMedGoogle Scholar
  27. Ojala D, Montoya J, Attardi G (1981) TRNA punctuation model of RNA processing in human mitochondrial. Nature 290:470–474CrossRefPubMedGoogle Scholar
  28. Olson SL (1973) A classification of the Rallidae. Wilson Bull 85:381–416Google Scholar
  29. Ozaki K, Yamamoto Y, Yamagishi S (2010) Genetic diversity and phylogeny of the endangered Okinawa Rail, Gallirallus okinawae. Genes Genet Syst 85:55–63CrossRefPubMedGoogle Scholar
  30. Pacheco MA, Battistuzzi FU, Lentino M, Aguilar RF, Kumar S, Escalante AA (2011) Evolution of modern birds revealed by mitogenomics: Timing the tadiation and origin of major orders. Mol Biol Evol 28:1927–1942CrossRefPubMedPubMedCentralGoogle Scholar
  31. Peng Z, Wake DB (2009) Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 53:492–508CrossRefGoogle Scholar
  32. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  33. Quinn TW (1993) Sequence evolution in and around the mitochondrial control region in birds. J Mol Evol 37:417–425CrossRefPubMedGoogle Scholar
  34. Randi E, Lucchini V (1998) Organization and evolution of the mitochondrial DNA control region in the avian genus alectoris. J Mol Evol 47:449–462CrossRefPubMedGoogle Scholar
  35. Reyes A, Gissi C, Catzeflis F, Nevo E, Pesole G, Saccone C (2004) Congruent mammalian trees from mitochondrial and nuclear genes using Bayesian methods. Mol Biol Evol 21:397–403CrossRefPubMedGoogle Scholar
  36. Roques S, Godoy JA, Negro JJ, Hiraldo F (2004) Organization and variation of the mitochondrial control region in two vulture species, gypaetus barbatus and neophron percnopterus. J Hered 95:332–337CrossRefPubMedGoogle Scholar
  37. Ruan L, Wang Y, Hu J, Ouyang Y (2012) Polyphyletic origin of the genus Amaurornis inferred from molecular phylogenetic analysis of rails. Biochem Genet 50:959–966CrossRefPubMedGoogle Scholar
  38. Russell RD, Beckenbach AT (2008) Recoding of translation in turtle mitochondrial genomes: programmed frameshift mutations and evidence of a modified genetic code. J Mol Evol 67:682–695CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205:125–140CrossRefPubMedGoogle Scholar
  40. Shi Y, Shan X, Li J, Zhang X, Zhang H (2003) Sequence and organization of the complete mitochondrial genome of the Indian muntjac (Muntiacus muntjak). Acta Zool Sin 49:629–636Google Scholar
  41. Sibley CG, Ahlquist JE (1972) A comparative study of the egg white proteins of non-passerine birds. Bull Peabody Mus Nat Hist 39:1–276Google Scholar
  42. Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New HavenGoogle Scholar
  43. Sibley CG, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New HavenGoogle Scholar
  44. Slikas B, Olson SL, Fleischer RC (2002) Rapid, independent evolution of flightlessness in four species of Pacific Island rails (Rallidae): an analysis based on mitochondrial sequence data. J Avian Biol 33:5–14CrossRefGoogle Scholar
  45. Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12:105–114CrossRefPubMedGoogle Scholar
  46. Suzuki H, Nunome M, Kinoshita G, Aplin KP, Vogel P, Kryukov AP, Jin ML, Han SH, Maryanto I, Tsuchiya K (2013) Evolutionary and dispersal history of Eurasian house mice (Mus musculus) clarified by more extensive geographic sampling of mitochondrial DNA. Heredity 111:375–390CrossRefPubMedPubMedCentralGoogle Scholar
  47. Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123CrossRefPubMedGoogle Scholar
  48. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  49. Trewick SA (1997) Flightlessness and phylogeny amongst endemic Rails (Aves: Rallidae) of the New Zealand Region. Philos Trans R Soc B 352:429–446CrossRefGoogle Scholar
  50. Wan QH, Wu H, Fujihara T, Fang SG (2004) Which genetic marker for which conservation genetics issue? Electrophoresis 25:2165–2176CrossRefPubMedGoogle Scholar
  51. Wang QS (2006) Fauna Sinica: Aves Gruiformes. Science Press, Beijing, pp 57–125Google Scholar
  52. Washington CM, Paterson AM, Sixtus CR, Ross JG (2008) Roadside behaviour of Porphyrio porphyrio melanotus (Aves: Rallidae). N Z Nat Sci 33:33–41Google Scholar
  53. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216CrossRefPubMedGoogle Scholar
  54. Wu X, Wang Y, Zhou K, Zhu W, Nie J, Wang C (2003) Complete mitochondrial DNA sequence of Chinese alligator, Alligator sinensis, and phylogeny of crocodiles. Chin Sci Bull 48:2050–2054CrossRefGoogle Scholar
  55. Yang R, Wu X, Yan P, Su X, Yang B (2010) Complete mitochondrial genome of Otis tarda (Gruiformes: Otididae) and phylogeny of Gruiformes inferred from mitochondrial DNA sequences. Mol Biol Rep 37:3057–3066CrossRefPubMedGoogle Scholar
  56. Zhang P, Chen YQ, Zhou H, Wang XL, Qu LH (2003) The complete mitochondrial genome of a relic salamander, Ranodon sibiricus (Amphibia: Caudata) and implications for amphibian phylogeny. Mol Phylogenet Evol 28:620–626CrossRefPubMedGoogle Scholar
  57. Zhang L, Wang L, Gowda V, Wang M, Li X, Kan X (2012) The mitochondrial genome of the Cinnamon Bittern, Ixobrychus cinnamomeus (Pelecaniformes: Ardeidae): sequence, structure and phylogenetic analysis. Mol Biol Rep 39:8315–8326CrossRefPubMedGoogle Scholar
  58. Zhong D, Zhao G, Zhang Z, Xun A (2002) Advance in the entire balance and local unbalance of base distribution in genome. Hereditas 24:351–355PubMedGoogle Scholar
  59. Zou Y, Jing MD, Bi XX, Zhang T, Huang L (2015) The complete mitochondrial genome sequence of the little egret (Egretta garzetta). Genet Mol Biol 38:162–172CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zwickl DJ, Hillis DM (2002) Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 51:588–598CrossRefPubMedGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer-Science and Media 2017

Authors and Affiliations

  1. 1.School of Life SciencesLudong UniversityYantaiPeople’s Republic of China
  2. 2.State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of ZoologyChinese Academy of SciencesKunmingPeople’s Republic of China

Personalised recommendations