Advertisement

Genes & Genomics

, Volume 38, Issue 4, pp 359–365 | Cite as

Transcriptome profiling of the Pacific oyster Crassostrea gigas by Illumina RNA-seq

  • Hyun-Jeong Lim
  • Jong-Sung Lim
  • Jeong-Soo Lee
  • Beom-Soon Choi
  • Dong-Inn Kim
  • Haeng-Woon Kim
  • Jae-Sung RheeEmail author
  • Ik-Young ChoiEmail author
Research Article

Abstract

In this study, the whole transcriptome of the Pacific oyster Crassostrea gigas was sequenced using Illumina RNA-seq. De novo assembly was performed with 33,750,764 raw reads using Trinity, which assembled 87,887 contigs. Transdecoder found 41,542 candidate coding contigs which showed homology to other species by BLAST analysis. Functional gene annotation was performed by Gene Ontology and KEGG pathway analyses. Finally, we identified a number of expressed gene pathways for C. gigas representing a useful model animal for gene information-based study such as environmental monitoring, immune-relevant aquaculture, and ecotoxicogenomics studies to uncover molecular mechanisms of stress-triggered sensitivity and physiological response to C. gigas.

Keywords

Oyster Crassostrea gigas Transcriptome RNA-seq 

Notes

Acknowledgments

This work was supported by a Grant (RP-2015-AG-089) funded to Hyun-Jeong Lim, National Institute of Fisheries Science of the Korean government.

Compliance of bioethical standard

All the experiments were approved by the animal care and use committee of National Fisheries Research and Development Institute (NFRDI, Pusan, South Korea).

Conflict of Interest

All authors claim no conflicts of interest.

Supplementary material

13258_2015_376_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)
13258_2015_376_MOESM2_ESM.pptx (76 kb)
Supplementary material 2 (PPTX 75 kb)
13258_2015_376_MOESM3_ESM.xlsx (4.9 mb)
Supplementary material 3 (XLSX 4999 kb)

References

  1. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511CrossRefPubMedGoogle Scholar
  2. Alzieu C, Heral M (1984) Ecotoxicological effects of organotin compounds on oyster culture. In: Persoone G, Jaspers E, Claus C (eds) Ecotoxicological testing for the marine environment, vol 2. State University, Belgium, pp 187–195Google Scholar
  3. Bourlat SJ, Borja A, Gilbert J, Taylor MI, Davies N, Weisberg SB, Griffith JF, Lettieri T, Field D, Benzie J et al (2013) Genomics in marine monitoring: new opportunities for assessing marine health status. Mar Pollut Bull 74:19–31CrossRefPubMedGoogle Scholar
  4. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefPubMedGoogle Scholar
  5. Curole JP, Hedgecock D (2007) Bivalve genomics: complications, challenges, and future perspectives. In: Liu ZJ (ed) Aquaculture genome technologies. Blackwell Publishing, Ames, pp 525–543CrossRefGoogle Scholar
  6. de Lorgeril J, Zenagui R, Rosa RD, Piquemal D, Bachère E (2011) Whole transcriptome profiling of successful immune response to Vibrio infections in the oyster Crassostrea gigas by digital gene expression analysis. PLoS One 6:e23142CrossRefPubMedPubMedCentralGoogle Scholar
  7. Du Y, Zhang L, Huang B, Guan X, Li L, Zhang G (2013) Molecular cloning, characterization, and expression of two myeloid differentiation factor 88 (Myd88) in Pacific oyster, Crassostrea gigas. J World Aquac Soc 44:759–774CrossRefGoogle Scholar
  8. Feldmeyer B, Wheat CW, Krezdorn N, Rotter B, Pfenninger M (2011) Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance. BMC Genomics 12:317CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fent K, Sumpter JP (2011) Progress and promises in toxicogenomics in aquatic toxicology: is technical innovation driving scientific innovation? Aquat Toxicol 105:25–39CrossRefPubMedGoogle Scholar
  10. Food and Agriculture Organization (FAO) (2015) World aquaculture production of fish, crustaceans, molluscs, etc., by principal species in 2013Google Scholar
  11. Forrest BM, Keeley NB, Hopkins GA, Webb SC, Clement DM (2009) Bivalve aquaculture inestuaries: review and synthesis of oyster cultivation effects. Aquaculture 298:1–15CrossRefGoogle Scholar
  12. Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2:a003962CrossRefPubMedPubMedCentralGoogle Scholar
  13. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hedgecock D, Gaffney PM, Goulletquer P, Guo X, Reece K, Warr GW (2005) The case for sequencing the Pacific oyster genome. J Shellfish Res 24:429–441CrossRefGoogle Scholar
  15. Ho KK, Leung PT, Ip JC, Qiu JW, Leung KM (2014) De novo transcriptomic profile in the gonadal tissues of the intertidal whelk Reishia clavigera. Mar Pollut Bull 85:499–504CrossRefPubMedGoogle Scholar
  16. Hubert S, Hedgecock D (2004) Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics 168:351–362CrossRefPubMedPubMedCentralGoogle Scholar
  17. Malham SK, Cotter E, O’Keeffe S, Lynch S, Culloty SC, King JW, Latchford JW, Beaumont AR (2009) Summer mortality of the Pacific oyster, Crassostrea gigas, in the Irish Sea: the influence of temperature and nutrients on health and survival. Aquaculture 287:128–138CrossRefGoogle Scholar
  18. Montagnani C, Kappler C, Reichhart JM, Escoubas JM (2004) Cg-Rel, the first Rel/NF-κB homolog characterized in a mollusk, the Pacific oyster Crassostrea gigas. FEBS Lett 561:75–82CrossRefPubMedGoogle Scholar
  19. Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J Shellfish Res 23:51–61Google Scholar
  20. Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ponder WF, Colgan DJ, Healy JM, Nützel A, Simone LRL, Strong EE (2008) Caenogastropoda. In: Ponder WF, Lindberg DL (eds) Molluscan phylogeny and evolution. University of California Press, Berkeley, pp 331–383CrossRefGoogle Scholar
  22. Quayle DB, Newkirk GF (1989) Farming bivalve molluscs: methods for study and development. World Aquaculture Society, Baton RougeGoogle Scholar
  23. Riesgo A, Andrade SC, Sharma PP, Novo M, Pérez-Porro AR, Vahtera V, González VL, Kawauchi GY, Giribet G (2012) Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Front Zool 9:33CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sadamoto H, Takahashi H, Okada T, Kenmoku H, Toyota M, Asakawa Y (2012) De novo sequencing and transcriptome analysis of the central nervous system of mollusc Lymnaea stagnalis by deep RNA sequencing. PLoS One 7:e42546CrossRefPubMedPubMedCentralGoogle Scholar
  25. Soletchnik P, Ropert M, Mazurié J, Fleury PG, Le Coz F (2007) Relationships between oyster mortality patterns and environmental data from monitoring databases along the coasts of France. Aquaculture 271:384–400CrossRefGoogle Scholar
  26. Tirapé A, Bacque C, Brizard R, Vandenbulcke F, Boulo V (2007) Expression of immune-related genes in the oyster Crassostrea gigas during ontogenesis. Dev Comp Immunol 31:859–873CrossRefPubMedGoogle Scholar
  27. Tong Y, Zhang Y, Huang J, Xiao S, Zhang Y, Li J, Chen J, Yu Z (2015) Transcriptomics analysis of Crassostrea hongkongensis for the discovery of reproduction-related genes. PLoS One 10:e0134280CrossRefPubMedPubMedCentralGoogle Scholar
  28. Yum S, Woo S, Lee A, Won H, Kim J (2014) Hydra, a candidate for an alternative model in environmental genomics. Mol Cell Toxicol 10:339–346CrossRefGoogle Scholar
  29. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54CrossRefPubMedGoogle Scholar
  30. Zhang Y, He X, Yu F, Xiang Z, Li J, Thorpe KL, Yu Z (2013) Characteristic and functional analysis of toll-like receptors (TLRs) in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity. PLoS One 8:e76464CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zhang L, Li L, Zhu Y, Zhang G, Guo X (2014) Transcriptome analysis reveals a rich gene set related to innate immunity in the Eastern oyster (Crassostrea virginica). Mar Biotechnol 16:17–33CrossRefPubMedGoogle Scholar
  32. Zhang L, Li L, Guo X, Litman GW, Dishaw LJ, Zhang G (2015) Massive expansion and functional divergence of innate immune genes in a protostome. Sci Rep 5:8693CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zhao X, Yu H, Kong L, Liu S, Li Q (2014) Comparative transcriptome analysis of two oysters, Crassostrea gigas and Crassostrea hongkongensis provides insights into adaptation to hypo-osmotic conditions. PLoS One 9:e111915CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer-Science and Media 2015

Authors and Affiliations

  • Hyun-Jeong Lim
    • 1
  • Jong-Sung Lim
    • 2
  • Jeong-Soo Lee
    • 2
  • Beom-Soon Choi
    • 2
  • Dong-Inn Kim
    • 2
  • Haeng-Woon Kim
    • 1
  • Jae-Sung Rhee
    • 3
    Email author
  • Ik-Young Choi
    • 2
    Email author
  1. 1.West Sea Fisheries Research InstituteNational Fisheries Research and Development InstituteIncheonSouth Korea
  2. 2.National Instrumentation Center for Environmental Management, College of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
  3. 3.Department of Marine Science, College of Natural SciencesIncheon National UniversityIncheonSouth Korea

Personalised recommendations