Genes & Genomics

, Volume 37, Issue 12, pp 1017–1025 | Cite as

Characterization of Physa acuta expressed sequence tags and transcript mining following cadmium exposure

  • Ji Eun Jeong
  • Bharat Bhusan Patnaik
  • Se Won Kang
  • Hee-Ju Hwang
  • So Young Park
  • Tae Hun Wang
  • Eun Bi Park
  • Jae Bong Lee
  • Myung-Mo Nam
  • Yong Hun Jo
  • Yeon Soo Han
  • Jun-Sang Lee
  • Hong Seog Park
  • Yong Seok Lee
Research Article

Abstract

Freshwater molluscs have found strategic applications in public and veterinary health. Additionally, they have been used as bioindicator organisms towards environmental biomonitoring of polluted waters. The freshwater pulmonate, Physa acuta has been extensively studied as a potential biomarker in aquatic habitats with heavy metal, chemical, and microbial stressors. Lack of genomic resources is the bottleneck towards the study of candidate genes responsible for the unique adaptation of the mollusc to contaminated aquatic habitats. We have reported an EST survey of functionally relevant stress and defense related genes from P. acuta in our earlier study. In continuation of the same, we generated 1108 high-quality ESTs from a normalized cDNA library, pooled from the RNA isolated from the whole body tissue of CdCl2 exposed specimens of P. acuta. After clustering and assembly, we finally obtained 730 unique sequences representing 114 contigs and 616 singletons. Annotation of EST sequences revealed that 65.2, 62.8, and 35.9 % show significant homology to NCBI non-redundant database, Molluscs amino acid database, and NCBI KOG database, respectively. The functional characterization of the ESTs in Cd treated P. acuta group showed a greater proportion of signal transduction, cytoskeleton, and extracellular structure relevant genes compared with the control group. A large proportion of transcripts of cadmium treated P. acuta fell under the poorly characterized group of genes. These EST resources provide valuable information on Cd-specific transcript expression of P. acuta and could be utilized by scientists for developing new biomonitoring markers.

Keywords

Physa acuta Cadmium EST KOG analysis Biomarker 

References

  1. Amiard-Triquet C (2009) Behavioral disturbances: the missing link between sub-organismal and supra-organismal responses to stress? Prospects based on aquatic research. Hum Ecol Risk Assess 15:87–110CrossRefGoogle Scholar
  2. Barry MJ (2011) Effects of copper, zinc and dragonfly kairomone on growth rate and induced morphology of Bufo arabicus tadpoles. Ecotoxicol Environ Saf 74:918–923CrossRefPubMedGoogle Scholar
  3. Bhattacharyya MH, Wilson AK, Rajan SS, Jonah M (2000) Biochemical pathways in cadmium toxicity. In: Zalups RK, Koropatnick J (eds) Molecular biology and toxicology of metals. Taylor and Francis, London, pp 34–74Google Scholar
  4. Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58CrossRefPubMedGoogle Scholar
  5. Byzitter J, Lukowiak K, Karnik V, Dalesman S (2012) Acute combined exposure to heavy metals (Zn, Cd) blocks memory formation in a freshwater snail. Ecotoxicol 21:860–868CrossRefGoogle Scholar
  6. Connor KM, Gracey AY (2011) Circadian cycles are the dominant transcriptional rhythm in the intertidal mussel, Mytilus californianus. Proc Natl Acad Sci USA 108:16110–16115PubMedCentralCrossRefPubMedGoogle Scholar
  7. Cui Y, McBride SJ, Boyd WA, Alper S, Freedman JH (2007) Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol 8:R122. doi:10.1186/gb-2007-8-6-r122 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194CrossRefPubMedGoogle Scholar
  9. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185CrossRefPubMedGoogle Scholar
  10. Gagnaire B, Geffard O, Xuereb B, Margoum C, Garric J (2007) Cholinesterase activities as potential biomarkers: characterization in two freshwater snails, Potamopygus antipodarum (Mollusca, Hydrobiidae, Smith 1889) and Valvata piscinalis (Mollusca, Valvatidae, Muller 1774). Chemosphere 71:553–560CrossRefPubMedGoogle Scholar
  11. Guo Y, He H (2014) Identification and characterization of a goose-type lysozyme from sewage snail Physa acuta. Fish Shellfish Immunol 39:321–325CrossRefPubMedGoogle Scholar
  12. Hossain A, Aditya G (2013) Cadmium biosorption potential of shell dust of the freshwater invasive snail Physa acuta. J Environ Chem Eng 1:574–580CrossRefGoogle Scholar
  13. Jenny MJ, Ringwood AH, Lacy ER, Lewitus AJ, Kempton JW, Gross PS, Warr GW, Chapman RW (2002) Potential indicators of stress response identified by expressed sequence tag analysis of hemocytes and embryos from the American oyster, Crassostrea virginica. Mar Biotechnol 4:81–93CrossRefPubMedGoogle Scholar
  14. Jo YH, Baek MK, Kang SW, Lee JB, Byun IS, Choi SH, Chae SH, Kang JH, Han YS, Park HS, Lee YS (2009) Molecular cloning and expression pattern of Metallothionein gene from the left-handed shell, Physa acuta. Korean J Malacol 25:223–230Google Scholar
  15. Kang SW, Hwang HJ, Park SY, Wang TH, Park EB, Lee TH, Hwang UW, Lee J-S, Park HS, Han YS, Lim CE, Kim S, Lee YS (2014) Mollusks sequence database: version II. Korean J Malacol 30:429–431CrossRefGoogle Scholar
  16. Karuthapandi M, Rao DV, Xavier Innocent B (2013) Freshwater mollusc Physa acuta (Gastropoda: Pulmonata) new distributional record from Andhra Pradesh, India. Int J Life Sci Educ Res 1:54–56Google Scholar
  17. Knapen D, Reynders H, Bervoets L, Verheyen E, Blust R (2007) Metallothionein gene and protein expression as a biomarker for metal pollution in natural gudgeon populations. Aquat Toxicol 82:163–172CrossRefPubMedGoogle Scholar
  18. Koedrith P, Kim H, Weon JI, Seo YR (2013) Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health 216:587–598CrossRefPubMedGoogle Scholar
  19. Lee JS, Raisuddin S (2008) Modulation of expression of oxidative stress genes of the intertidal copepod Tigriopus japonicus after exposure to environmental chemicals. In: Murakami Y, Nakayama K, Kitamura SI, Iwata H, Tanabe S (eds) Interdisciplinary studies on environmental chemistry-biological responses to chemical pollutants. TERRAPUB, Tokyo, pp 95–105Google Scholar
  20. Lee K-W, Raisuddin S, Rhee J-S, Hwang D-S, Yu IT, Lee Y-M, Park HG, Lee J-S (2008) Expression of glutathione S-transferase (GST) genes in the marine copepod Tigriopus japonicus exposed to trace metals. Aquat Toxicol 89:158–166CrossRefPubMedGoogle Scholar
  21. Lee YS, Jo YH, Kim DS, Kim DW, Kim MY, Choi SH, Yon JO, Byun IS, Kang BR, Jeong KH, Park HS (2004) Construction of BLAST server for mollusks. Korean J Malacol 20:165–169Google Scholar
  22. Lee YS, Lee S-G, Kang SW, Jeong JE, Baek MK, Choi S-H, Chae S-H, Jo YH, Han YS, Park H-S (2011) Expressed sequence tag analysis of Physa acuta: a freshwater pulmonate in Korea. J Shellfish Res 30:127–132CrossRefGoogle Scholar
  23. Lefcort H, Abbott DP, Cleary DA, Howell E, Keller NC, Smith MM (2004) Aquatic snails from mining sites have evolved to detect and avoid heavy metals. Arch Environ Contam Toxicol 46:478–484CrossRefPubMedGoogle Scholar
  24. Leung PTY, Ip JCH, Mak SST, Qiu JW, Lam PKS, Wong CKC, Chan LL, Leung KMY (2014) De novo transcriptome analysis of Perna viridis highlights tissue-specific patterns for environmental studies. BMC Genom 15:804. doi:10.1186/1471-2164-15-804 CrossRefGoogle Scholar
  25. Lopez E, Arce C, Oset-Gasque MJ, Canadas S, Gonzalez MP (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Rad Biol Med 40:940–951CrossRefPubMedGoogle Scholar
  26. Lopez-Doval JC, Poquet M, Munoz I (2014) Sublethal effects of the herbicide diuron on the freshwater snail Physella acuta. Limnetica 33:205–216Google Scholar
  27. Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, CambridgeGoogle Scholar
  28. Milan M, Coppe A, Reinhardt R, Cancela LM, Leite RB, Saavedra C, Ciofi C, Chelazzi G, Patarnello T, Bortoluzzi S, Bargelloni L (2011) Transcriptome sequencing and microarray development for the Manila clam Ruditapes philippinarum: genomic tools for environmental monitoring. BMC Genome 12:234CrossRefGoogle Scholar
  29. Moolman L, Van Vuren JHJ, Wepener V (2007) Comparative studies on the uptake and effects of cadmium and zinc on the cellular energy allocation of two freshwater gastropods. Ecotoxicol Environ Saf 68:443–450CrossRefPubMedGoogle Scholar
  30. Pihan F, Vaufleury A (2000) The snail as a target organism for the evaluation of industrial waste dump contamination and the efficiency of its bioremediation. Ecotoxicol Environ Saf 46:137–147CrossRefPubMedGoogle Scholar
  31. Raisuddin S, Kwok KWH, Leung KMY, Schlenk D, Lee J-S (2007) The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics. Aquat Toxicol 83:161–173CrossRefPubMedGoogle Scholar
  32. Regier N, Baerlocher L, Munsterkotter M, Farinelli L, Cosio C (2013) Analysis of the Elodea nuttallii transcriptome in response to mercury and cadmium pollution: development of sensitive tools for rapid ecotoxicological testing. Environ Sci Technol 47:8825–8834PubMedGoogle Scholar
  33. Rice P, Longden I, Bleasby A (2000) Emboss: the European molecular biology open software suite. Trends Genet 16(276):277Google Scholar
  34. Rittschof D, McClellan-Green P (2005) Molluscs as multidisciplinary models in environment toxicology. Mar Poll Bull 50:369–373CrossRefGoogle Scholar
  35. Rivetti C, Campos B, Faria M, Catala NC, Malik A, Munoz I, Tauler R, Soares AMVM, Osorio V, Perez S, Gorga M, Petrovic M, Mastroianni N, Lopez de Alda M, Masia A, Campo J, Pico Y, Guasc H, Barcelo D, Barata C (2015) Transcriptomic, biochemical and individual markers in transplanted Daphnia magna to characterize impacts in the field. Sci Total Environ 15:200–212CrossRefGoogle Scholar
  36. Sanchez-Arguello P, Fernandez C, Tarazona JV (2009) Assessing the effects of fluoxetine on Physa acuta (Gastropoda, Pulmonata) and Chironomous riparius (Insecta, Diptera) using a two-species water-sediment test. Sci Total Environ 407:1937–1946CrossRefPubMedGoogle Scholar
  37. Shuhaimi-Othman M, Nur-Amalina R, Nadzifah Y (2012) Toxicity of metals to a freshwater snail, Melanoides tuberculata. Sci World J. doi:10.1100/2012/125785 Google Scholar
  38. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinf 4:41CrossRefGoogle Scholar
  39. Wadaan MAM (2007) The freshwater growing snail Physa acuta: a suitable bioindicator for testing cadmium toxicity. Saudi J Biol Sci 14:185–190Google Scholar
  40. Yamada H, Koizumi S (2002) DNA Microarray analysis of human gene expression induced by a non-lethal dose of cadmium. Ind Health 40:159–166CrossRefPubMedGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer-Science and Media 2015

Authors and Affiliations

  • Ji Eun Jeong
    • 2
  • Bharat Bhusan Patnaik
    • 1
    • 3
  • Se Won Kang
    • 1
  • Hee-Ju Hwang
    • 1
  • So Young Park
    • 1
  • Tae Hun Wang
    • 1
  • Eun Bi Park
    • 1
  • Jae Bong Lee
    • 4
  • Myung-Mo Nam
    • 5
  • Yong Hun Jo
    • 6
  • Yeon Soo Han
    • 6
  • Jun-Sang Lee
    • 7
  • Hong Seog Park
    • 8
  • Yong Seok Lee
    • 1
  1. 1.Department of Life Science and Biotechnology, College of Natural SciencesSoonchunhyang UniversityAsanRepublic of Korea
  2. 2.Department of Applied Biology, College of Natural Resources and Life ScienceDong-A UniversityBusanRepublic of Korea
  3. 3.Trident School of Biotech SciencesTrident Academy of Creative Technology (TACT)BhubaneswarIndia
  4. 4.Korea Zoonosis Research InstituteChonbuk National UniversityJeonju-siRepublic of Korea
  5. 5.East Sea Fisheries Research Institute, NFRDIGangneungRepublic of Korea
  6. 6.College of Agriculture and Life ScienceChonnam National UniversityGwangjuRepublic of Korea
  7. 7.Institute of Environmental ResearchKangwon National UniversityChuncheon-siRepublic of Korea
  8. 8.Research InstituteGnC BIO Co., Ltd.DaejeonRepublic of Korea

Personalised recommendations