Genes & Genomics

, Volume 36, Issue 6, pp 745–753 | Cite as

Cloning and structure of a histocompatibility class IIA gene (Lelo-DAA) in Chinese longsnout catfish (Leiocassis longirostris)

  • Tong Shen
  • Xiaoshun He
  • Meiling Lei
  • Jingru Wang
  • Xiuming Li
  • Jianming Li
Research Article

Abstract

Here, the major histocompatibility complex (MHC) class II alpha chain gene in the Chinese longsnout catfish (Leiocassis longirostris) was characterized through cloning, sequencing, polymorphism analysis, and expression patterns in various tissues. The full-length LeloDAA cDNA comprises 1,114 bp with a 5′-UTR region of 79 bp, an open reading frame of 714 bp and a 3′-UTR of 302 bp. The deduced protein sequence shows the following important features: leader peptide, α1, α2, and CP/TM/CYT regions. Using long PCR techniques, the genomic sequence was further identified to be 2,093 bp in length, containing four exons and three introns. Three class IIA alleles were identified from four individuals. Two different alleles observed (at most) in each individual suggest the existence of a single locus of class IIA gene in the Chinese longsnout catfish genome. This locus is polymorphic and most of the amino acidic changes occurred in the α1 domain containing the peptide-binding region. Lelo-DAA mRNA expression was mainly found in the intestine, gills, spleen, head kidney and liver; minor expression was detected in the stomach, skin, heart and muscle. Our results yield insight into Chinese longsnout catfish T cell immune responses and will aid future work on the genetic status of this economically important species.

Keywords

MHC class IIA Chinese longsnout catfish Cloning Expression Polymorphism 

Notes

Acknowledgments

This research was supported as a China Postdoctoral Science Foundation Funded Project (2013m541726), University Science Research Project of Jiangsu Province (13kjb310019), Natural Science Foundation of Jiangsu Province for Youth (BK20140364).

Conflict of interest

We confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Supplementary material

13258_2014_208_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)
13258_2014_208_MOESM2_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105CrossRefPubMedGoogle Scholar
  2. Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 1:179–224CrossRefGoogle Scholar
  3. Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Mol Evol 16:363–377Google Scholar
  4. Buonocore F, Randelli E, Casani D, Costantini S, Facchiano A, Scapigliati G, Stet RJM (2007) Molecular cloning, differential expression and 3D structural analysis of the MHC class IIb chain from sea bass (Dicentrarchus labrax). Fish Shellfish Immun 23:853–866CrossRefGoogle Scholar
  5. Chen SL, Xu MY, Hu SN, Li L (2004) Analysis of immune-relevant genes expressed in red sea bream (Chrysophrys major) spleen. Aquaculture 240(1):115–130CrossRefGoogle Scholar
  6. Cosson P, Bonifacino JS (1992) Role of transmembrane domain interactions in the assembly of class II MHC molecules. Science 258:659–662CrossRefPubMedGoogle Scholar
  7. Dai JH, Yin WL, Yang DS, Xiong QM (1994) Studies on mitochondrial DNA from liver of Leiocassis longirostris. J Wuhan Univ 1:115–120 (in Chinese)Google Scholar
  8. Dixon B, Stet RJM (2001) The relationship between major histocompatibility receptors and innate immunity in teleost fish. Dev Comp Immunol 25:683–699CrossRefPubMedGoogle Scholar
  9. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016CrossRefPubMedGoogle Scholar
  10. Gannagé M, Münz C (2009) Autophagy in MHC class II presentation of endogenous antigens. Curr Top Microbiol 335:123–140Google Scholar
  11. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M, Appel R, Bairoch A (2005) Protein identification and analysis tool on the ExPASy server. In: Walker J (ed) The Proteomics Protocols Handbook. Humana Press, Totowa, pp 571–607CrossRefGoogle Scholar
  12. Godwin UB, Flores M, Quiniou S, Wilson MR, Miller NW, Clem LW, McConnell TJ (2000) MHC class II A genes in the channel catfish (Ictalurus punctatus). Dev Comp Immunol 24:609–622CrossRefPubMedGoogle Scholar
  13. Grimholt U, Getahun A, Hermsen T, Stet RJM (2005) The major histocompatibility class II alpha chain in salmonid fishes. Dev Comp Immunol 24:751–763CrossRefGoogle Scholar
  14. Hardee JJ, Godwin U, Benedetto R, McConnell TJ (1995) Major histocompatibility complex class II A gene polymorphism in the striped bass. Immunogenetics 41:229–238CrossRefPubMedGoogle Scholar
  15. Hashimoto K, Nakanishi T, Kurosawa Y (1990) Isolation of carp genes encoding major histocmpatibility complex antigens. P Natl Acad Sci USA 87:6863–6867CrossRefGoogle Scholar
  16. Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, Castro ED, Lachaize C, Langendijk-Genevaux PS, Sigrist CJA (2008) The 20 years of PROSITE. Nucleic Acids Res 36:245–249CrossRefGoogle Scholar
  17. Janeway CA, Travers P, Walport M, Shlomchik M (2001) Immunobiology: the immune system in health and disease. Garland Science, New YorkGoogle Scholar
  18. Julenius K, Mølgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15:153–164CrossRefPubMedGoogle Scholar
  19. Kennedy LJ, Ryvar R, Gaskell RM, Addie DD, Willoughbym K, Carter SD, Thomson W, Ollier WER, Radford AD (2002) Sequence analysis of MHC DRB alleles in domestic cats from the United Kingdom. Immunogenetics 54:348–352CrossRefPubMedGoogle Scholar
  20. Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York, vol xv, 775 pGoogle Scholar
  21. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefPubMedGoogle Scholar
  22. Lehman N, Decker DJ, Stewart BS (2004) Divergent patterns of variation in major histocompatibility complex class II alleles among antartic phocid pinnipeds. J Mammal 85:1215–1224CrossRefGoogle Scholar
  23. Luo M, Jiang LK, Liu Y, Zhan GQ, Xia SZ (2000) Comparative study on isoenzymes in Leiocassis longirostris. Chin J Appl Environ Biol 6:447–451Google Scholar
  24. Meager S, Potts WK (1997) A microsatellite-based MHC genotyping system for house mice (Mus domesticus). Hereditas 127:75–82CrossRefGoogle Scholar
  25. Milinski M (2003) The function of mate choice in sticklebacks: optimizing Mhc genetics. J Fish Biol 63:1–16CrossRefGoogle Scholar
  26. Milinski M (2006) The major histocompatibility complex, sexual selection, and mate choice. Annu Rev Ecol Evol S 37:159–186CrossRefGoogle Scholar
  27. Morris DJ, Adams A, Richards RH (2000) In situ hybridisation identifies the gill as a portal of entry for PKK (Phylum Myxozoa), the causative agent of proliferative kidney disease in salmonids. Parasitol Res 86:950–956CrossRefPubMedGoogle Scholar
  28. Murray BW, Sültmann H, Klein J (1999) New family of Mhc class II A genes identified from cDNA sequences in the cichlid fish Aulonocara hansbaenschi. Immunogenetics 49:544–548CrossRefPubMedGoogle Scholar
  29. Nielsen M, Lundegaard C, Lund O, Petersen TN (2010) CPH models-3.0 -Remote homology modeling using structure guided sequence profiles. Nucleic Acids Res 38(Web Server issue):576–581CrossRefGoogle Scholar
  30. Ober C, van der Ven K (1997) Immunogenetics of reproduction: an overview. Curr Top Microbiol 222:1–23Google Scholar
  31. Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21:1719–1720CrossRefPubMedGoogle Scholar
  32. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  33. Shen T, Xu SX, Yang M, Pang SY, Yang G (2011) Molecular cloning, expression pattern, and 3D structural analysis of the MHC class IIB gene in the Chinese longsnout catfish (Leiocassis longirostris). Vet Immunol Immunop 141:33–45CrossRefGoogle Scholar
  34. Steinmetz M, Hood L (1983) Genes of the major histocompatibility complex in mouse and man. Science 222:727–733CrossRefPubMedGoogle Scholar
  35. Sültmann H, Mayer WE, Figueroa F, O’hUigin C, Klein J (1993) Zebrafish Mhc class II α chain-encoding genes: polymorphism, expression, and function. Immunogenetics 38:408–420CrossRefPubMedGoogle Scholar
  36. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  37. Wegner KM, Reusch TBH, Kalbe M (2003) Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J Evolution Biol 16:224–232CrossRefGoogle Scholar
  38. Wu JM, Jiang RL, Zhang JP (1999) Artificial induced spawning of Leiocassis longirostris and change of ultrastructure of hypophysis GTH cell. J Fish China 23:248–253Google Scholar
  39. Xu TJ, Chen SL, Ji XS, Sha ZX (2009) Molecular cloning, genomic structure, polymorphism and expression analysis of major histocompatibility complex class IIA and IIB genes of half-smooth tongue sole (Cynoglossus semilaevis). Fish Shellfish Immun 27:192–201CrossRefGoogle Scholar
  40. Zhang YX, Chen SL (2006) Molecular identification, polymorphism, and expression analysis of major histocompatibility complex class IIA and B genes of turbot (Scophthalmus maximus). Mar Biotechnol 8:611–623CrossRefPubMedGoogle Scholar
  41. Zhang YX, Chen SL, Liu YG, Sha ZX, Liu ZJ (2006) Major histocompatibility complex class IIB allele polymorphism and its association with resistance/susceptibility to vibrio anguillarum in Japanese flounder (Paralichthys olivaceus). Mar Biotechnol 8:600–610CrossRefPubMedGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer-Science and Media 2014

Authors and Affiliations

  • Tong Shen
    • 1
  • Xiaoshun He
    • 1
  • Meiling Lei
    • 1
  • Jingru Wang
    • 1
  • Xiuming Li
    • 1
  • Jianming Li
    • 1
  1. 1.Pathology Center and Department of PathologySoochow UniversitySuzhouChina

Personalised recommendations