Genes & Genomics

, Volume 35, Issue 4, pp 541–547 | Cite as

Tissue specific haemoglobin gene expression suggests adaptation to local marine conditions in North Sea flounder (Platichthys flesus L.)

  • Peter Foged LarsenEmail author
  • Einar Eg Nielsen
  • Michael Møller Hansen
  • Tobias Wang
  • Kristian Meier
  • Cino Pertoldi
  • Volker Loeschcke
Research Article


Recent genetic analyses of candidate genes and gene expression in marine fishes have provided evidence of local adaptation in response to environmental differences, despite the lack of strong signals of population structure from conventional neutral genetic markers. In this study expression of the haemoglobin alpha and beta subunit genes was studied in reciprocally transplanted European flounder Platichthys flesus from the highly saline North Sea and the brackish Baltic Sea. Clear differences in expression patterns of haemoglobin alpha and beta subunit genes were found among different types of tissue in flounder. In gill tissue a plastic response to salinity treatments was observed with general up-regulation of these genes concomitant with higher salinity. For liver tissue a population specific expression differences was observed with lower expression at simulated non-native compared to native salinities. Finally, for kidney tissue a stress response was observed in one population, with gene up-regulation when North Sea flounders were transplanted to low salinity. This study underlines the importance of tissue specific gene expression and the significance of gene expression for evolution of local adaptation in high gene flow marine fishes.


Environmental stress High gene flow species Long-term acclimation Reciprocal transplantation 



This study has been partly supported by the Danish Natural Science Research Council for financial support to CP (Grant Number: #11-103926 #09-065999 and 95095995) and the Carlsberg Foundation (Grant Number 2011-01-0059).


  1. Acerete L, Balasch JC, Espinosa E, Josa A, Tort L (2004) Physiological responses in Eurasian perch (Perca fluviatilis, L.) subjected to stress by transport and handling. Aquaculture 237:167–178CrossRefGoogle Scholar
  2. Alves RN, Cordeiro O, Silva TS, Richard N, de Vareilles M, Marino G, Di Marco P, Rodrigues PM, Conceicao LEC (2010) Metabolic molecular indicators of chronic stress in gilthead seabream (Sparus aurata) using comparative proteomics. Aquaculture 299:57–66CrossRefGoogle Scholar
  3. Astner I, Schulze JO, van den Heuvel J, Jahn D, Schubert W-D, Heinz DW (2005) Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO 24:3166–3177CrossRefGoogle Scholar
  4. Biagioli M, Pinto M, Cesselli D, Zaninello M, Lazarevic D, Roncaglia P, Simone R, Vlachouli C, Plessy C, Bertin N et al (2009) Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells. Proc Natl Acad Sci USA 106:15454–15459PubMedCrossRefGoogle Scholar
  5. Campo S, Nastasi G, D’Ascola A, Campo GM, Avenoso A, Traina P, Calatroni A, Burrascano E, Ferlazzo A, Lupidi G et al (2008) Hemoglobin system of Sparus aurata: changes in fishes farmed under extreme conditions. Sci Total Environ 403:148–153PubMedCrossRefGoogle Scholar
  6. Choi CY (2010) Environmental stress-related gene expression and blood physiological responses in olive flounder (Paralichthys olivaceus) exposed to osmotic and thermal stress. Anim Cells Systems 14:17–23CrossRefGoogle Scholar
  7. Cossins AR, Williams DR, Foulkes NS, Berenbrink M, Kipar A (2009) Diverse cell-specific expression of myoglobin isoforms in brain, kidney, gill and liver of the hypoxia-tolerant carp and zebrafish. J Exp Biol 212:627–638PubMedCrossRefGoogle Scholar
  8. Evrard E, Devaux A, Bony S, Burgeot T, Riso R, Budzinski H, Le Du M, Quiniou L, Laroche J (2010) Responses of the European flounder Platichthys flesus to the chemical stress in estuaries: load of contaminants, gene expression, cellular impact and growth rate. Biomarkers 15:111–127PubMedCrossRefGoogle Scholar
  9. Giger T, Excoffier L, Amstutz U, Day PJR, Champigneulle A, Hansen MM, Kelso J, LargiadÈr CR (2008) Population transcriptomics of life-history variation in the genus Salmo. Mol Ecol 17:3095–3108PubMedCrossRefGoogle Scholar
  10. Gingerich W, Pityer R (1989) Comparison of whole body and tissue blood volumes in rainbow trout (Salmo gairdneri) with I bovine serum albumin and Cr-erythrocyte tracers. Fish Physiol Biochem 6:39–47CrossRefGoogle Scholar
  11. Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci USA 98:1993–1998PubMedCrossRefGoogle Scholar
  12. Haase VH (2008) Hemoglobin in the Kidney: breaking with traditional dogma. J Am Soc Nephrol 19:1440–1441PubMedCrossRefGoogle Scholar
  13. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  14. Hemmer-Hansen J, Nielsen EE, Frydenberg J, Loeschcke V (2007a) Adaptive divergence in a high gene flow environment: Hsc70 variation in the European flounder (Platichthys flesus L.). Heredity 99:592–600PubMedCrossRefGoogle Scholar
  15. Hemmer-Hansen J, Nielsen EE, Gronkjaer P, Loeschcke V (2007b) Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder (Platichthys flesus L.). Mol Ecol 16:3104–3118PubMedCrossRefGoogle Scholar
  16. Jensen FB, Lecklin T, Busk M, Bury NR, Wilson RW, Wood CM, Grosell M (2002) Physiological impact of salinity increase at organism and red blood cell levels in the European flounder (Platichthys flesus). J Exp Mar Biol Ecol 274:159–174CrossRefGoogle Scholar
  17. Kammerer BD, Cech JJ, Kultz D (2010) Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia (Oreochromis mossambicus). Comp Biochem Physiol A 157:260–265CrossRefGoogle Scholar
  18. Knutsen H, Jorde PE, André C, Stenseth NC (2003) Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod. Mol Ecol 12:385–394PubMedCrossRefGoogle Scholar
  19. Larsen PF, Nielsen EE, Williams TD, Hemmer-Hansen J, Chipman JK, Kruhoffer M, Gronkjaer P, George SG, Dyrskjot L, Loeschcke V (2007) Adaptive differences in gene expression in European flounder (Platichthys flesus). Mol Ecol 16:4674–4683PubMedCrossRefGoogle Scholar
  20. Larsen PF, Nielsen EE, Koed A, Thomsen DS, Olsvik PA, Loeschcke V (2008a) Interpopulation differences in expression of candidate genes for salinity tolerance in winter migrating anadromous brown trout (Salmo trutta L.). BMC Genet 9:12PubMedCrossRefGoogle Scholar
  21. Larsen PF, Nielsen EE, Williams TD, Loeschcke V (2008b) Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus). Heredity 101:247–259PubMedCrossRefGoogle Scholar
  22. Larsen PF, Schulte PM, Nielsen EE (2011) Gene expression analysis for the identification of selection and local adaptation in fishes. J Fish Biol 78:1–22PubMedCrossRefGoogle Scholar
  23. Larsen PF, Nielsen EE, Meier K, Olsvik PA, Hansen MM, Loeschcke V (2012) Differences in Salinity Tolerance and Gene Expression Between Two Populations of Atlantic Cod (Gadus morhua) in Response to Salinity Stress. Biochem Gen 59:366–454Google Scholar
  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  25. Lundgreen K, Kiilerich P, Tipsmark C, Madsen S, Jensen F (2008) Physiological response in the European flounder (Platichthys flesus) to variable salinity and oxygen conditions. Comp Biochem Physiol B 178:909–915Google Scholar
  26. Marchand J, Evrard E, Guinand B, Cachot J, Quiniou L, Laroche J (2010) Genetic polymorphism and its potential relation to environmental stress in five populations of the European flounder Platichthys flesus, along the French Atlantic coast. Mar Environ Res 70:201–209PubMedCrossRefGoogle Scholar
  27. Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952PubMedCrossRefGoogle Scholar
  28. Montero D, Izquierdo MS, Tort L, Robaina L, Vergara JM (1999) High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata juveniles. Fish Physiol Biochem 20:53–60CrossRefGoogle Scholar
  29. Nielsen EE, Kenchington E (2001) A new approach to prioritizing marine fish and shellfish populations for conservation. Fish Fish 2:328–343CrossRefGoogle Scholar
  30. Nielsen EE, Gronkjaer P, Meldrup D, Paulsen H (2005) Retention of juveniles within a hybrid zone between North Sea and Baltic Sea Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 62:2219–2225CrossRefGoogle Scholar
  31. Nielsen EE, Hemmer-Hansen J, Larsen PF, Bekkevold D (2009) Population genomics of marine fishes: identifying adaptive variation in space and time. Mol Ecol 18:3128–3150PubMedCrossRefGoogle Scholar
  32. Nishi H, Inagi R, Kato H, Tanemoto M, Kojima I, Son D, Fujita T, Nangaku M (2008) Hemoglobin is expressed by mesangial cells and reduces oxidant stress. J Am Soc Nephrol 19:1500–1508PubMedCrossRefGoogle Scholar
  33. Rengmark AH, Slettan A, Lee WJ, Lie Ø, Lingaas F (2007) Identification and mapping of genes associated with salt tolerance in tilapia. J Fish Biol 71:409–422CrossRefGoogle Scholar
  34. Rise ML, Douglas SE, Sakhrani D, Williams J, Ewart KV, Rise M, Davidson WS, Koop BF, Devlin RH (2006) Multiple microarray platforms utilized for hepatic gene expression profiling of GH transgenic coho salmon with and without ration restriction. J Mol Endo 37:259–282CrossRefGoogle Scholar
  35. Roche H, Bogé G (1996) Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar Environ Res 41:27–43CrossRefGoogle Scholar
  36. Roesner A, Mitz SA, Hankeln T, Burmester T (2008) Globins and hypoxia adaptation in the goldfish, Carassius auratus. FEBS J 275:3633–3643PubMedCrossRefGoogle Scholar
  37. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  38. Seear P, Carmichael S, Talbot R, Taggart J, Bron J, Sweeney G (2010) Differential gene expression during smoltification of Atlantic Salmon (Salmo salar L.): a first large-scale microarray study. Mar Biotechnol 12:126–140PubMedCrossRefGoogle Scholar
  39. Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Let 6:1025–1037CrossRefGoogle Scholar
  40. Tipsmark CK, Luckenbach JA, Madsen SS, Kiilerich P, Borski RJ (2008) Osmoregulation and expression of ion transport proteins and putative claudins in the gill of Southern Flounder (Paralichthys lethostigma). Comp Biochem Physiol A 150:265–273CrossRefGoogle Scholar
  41. Tomanek L (2010) Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979PubMedCrossRefGoogle Scholar
  42. Ullal AJ, Wayne Litaker R, Noga EJ (2008) Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus, Rafinesque). Dev Comp Immunol 32:1301–1312PubMedCrossRefGoogle Scholar
  43. Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450CrossRefGoogle Scholar
  44. Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol 44:213–232CrossRefGoogle Scholar
  45. Whitehead A, Crawford DL (2006) Neutral and adaptive variation in gene expression. Proc Natl Acad Sci USA 103:5425–5430PubMedCrossRefGoogle Scholar
  46. Wintz H, Yoo LJ, Loguinov A, Wu Y–Y, Steevens JA, Holland RD, Beger RD, Perkins EJ, Hughes O, Vulpe CD (2006) Gene expression profiles in fathead minnow exposed to 2,4-DNT: correlation with toxicity in mammals. Toxicol Sci 94:71–82PubMedCrossRefGoogle Scholar

Copyright information

© The Genetics Society of Korea 2013

Authors and Affiliations

  • Peter Foged Larsen
    • 1
    • 2
    • 3
    Email author
  • Einar Eg Nielsen
    • 2
  • Michael Møller Hansen
    • 1
  • Tobias Wang
    • 1
  • Kristian Meier
    • 2
  • Cino Pertoldi
    • 1
    • 4
    • 5
  • Volker Loeschcke
    • 1
  1. 1.Department of Biological SciencesAarhus UniversityAarhus CDenmark
  2. 2.National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
  3. 3.Kopenhagen ResearchAarhus NDenmark
  4. 4.Department 18/Section of Environmental EngineeringAalborg UniversityAalborgDenmark
  5. 5.Aalborg ZooAalborgDenmark

Personalised recommendations