Genes & Genomics

, Volume 35, Issue 3, pp 265–271 | Cite as

DNA methylation of mobile genetic elements in human cancers

  • Kyudong Han
  • Jungname Lee
  • Heui-Soo Km
  • Kwangmo Yang
  • Joo Mi Yi


Mobile genetic elements are responsible for half of the human genome, creating the host genomic instability or variability through several mechanisms. Two types of abnormal DNA methylation in the genome, hypomethylation and hypermethylation, are associated with cancer progression. Genomic hypermethylation has been most often observed on the CpG islands around gene promoter regions in cancer cells. In contrast, hypomethylation has been observed on mobile genetic elements in the cancer cells. It is recently considered that the hypomethylation of mobile genetic elements may play a biological role in cancer cells along with the DNA hypermethylation on CpG islands. Growing evidence has indicated that mobile genetic elements could be associated with the cancer initiation and progression through the hypomethylation. Here we review the recent progress on the relationship between DNA methylation and mobile genetic elements, focusing on the hypomethylation of LINE-1 and HERV elements in various human cancers and suggest that DNA hypomethylation of mobile genetic elements could have potential to be a new cancer therapy target in the future.


Mobile genetic element Hypermethylation Hypomethylation LINE elements HERV elements 



This work was supported in part by National R&D program (50596-2013) through the Dongnam Institute of Radiological & Medical Sciences (DIRAMS) funded by the Korean Ministry of Education, Science and Technology and by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-10069).


  1. Andersson ML, Medstrand P, Yin H, Blomberg J (1996) Differential expression of human endogenous retroviral sequences similar to mouse mammary tumor virus in normal peripheral blood mononuclear cells. AIDS Res Hum Retroviruses 12:833–840PubMedCrossRefGoogle Scholar
  2. Armbruester V, Sauter M, Krautkraemer E, Meese E, Kleiman A, Best B, Roemer K, Mueller-Lantzsch N (2002) A novel gene from the human endogenous retrovirus K expressed in transformed cells. Clin Cancer Res 8:1800–1807PubMedGoogle Scholar
  3. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV (2010) LINE-1 retrotransposition activity in human genomes. Cell 141:1159–1170PubMedCrossRefGoogle Scholar
  4. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213PubMedCrossRefGoogle Scholar
  5. Bjerregaard B, Holck S, Christensen IJ, Larsson LI (2006) Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci 63:1906–1911PubMedCrossRefGoogle Scholar
  6. Boeke JD, Stoye JP (1997) Retrotransposons, Endogenous Retroviruses, and the Evolution of Retroelements. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)Google Scholar
  7. Bratthauer GL, Fanning TG (1992) Active LINE-1 retrotransposons in human testicular cancer. Oncogene 7:507–510PubMedGoogle Scholar
  8. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 100:5280–5285PubMedCrossRefGoogle Scholar
  9. Buscher K, Trefzer U, Hofmann M, Sterry W, Kurth R, Denner J (2005) Expression of human endogenous retrovirus K in melanomas and melanoma cell lines. Cancer Res 65:4172–4180PubMedCrossRefGoogle Scholar
  10. Buscher K, Hahn S, Hofmann M, Trefzer U, Ozel M, Sterry W, Lower J, Lower R, Kurth R, Denner J (2006) Expression of the human endogenous retrovirus-K transmembrane envelope, Rec and Np9 proteins in melanomas and melanoma cell lines. Melanoma Res 16:223–234PubMedCrossRefGoogle Scholar
  11. Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D, Voravud N, Sriuranpong V, Mutirangura A (2004) Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 23:8841–8846PubMedCrossRefGoogle Scholar
  12. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93PubMedCrossRefGoogle Scholar
  13. Cho YH, Yazici H, Wu HC, Terry MB, Gonzalez K, Qu M, Dalay N, Santella RM (2010) Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Res 30:2489–2496PubMedGoogle Scholar
  14. Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER (1998) Inactivation of the von Hippel–Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes Chromosom Cancer 22:200–209PubMedCrossRefGoogle Scholar
  15. Compare D, Rocco A, Liguori E, D’Armiento FP, Persico G, Masone S, Coppola-Bottazzi E, Suriani R, Romano M, Nardone G (2011) Global DNA hypomethylation is an early event in Helicobacter pylori-related gastric carcinogenesis. J Clin Pathol 64:677–682PubMedCrossRefGoogle Scholar
  16. Cordaux R, Udit S, Batzer MA, Feschotte C (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 103:8101–8106PubMedCrossRefGoogle Scholar
  17. Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, Kotsinas A, Gorgoulis V, Field JK, Liloglou T (2009) Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 124:81–87PubMedCrossRefGoogle Scholar
  18. Depil S, Roche C, Dussart P, Prin L (2002) Expression of a human endogenousretrovirus, HERV-K, in the blood cells of leukemia patients. Leukemia 16:254–259PubMedCrossRefGoogle Scholar
  19. Dobigny G, Ozouf-Costaz C, Waters PD, Bonillo C, Coutanceau JP, Volobouev V (2004) LINE-1 amplification accompanies explosive genome repatterning in rodents. Chromosome Res 12:787–793PubMedCrossRefGoogle Scholar
  20. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413PubMedCrossRefGoogle Scholar
  21. Ehrlich M, Woods CB, Yu MC, Dubeau L, Yang F, Campan M, Weisenberger DJ, Long T, Youn B, Fiala ES et al (2006) Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 25:2636–2645PubMedCrossRefGoogle Scholar
  22. Estécio MR, Gallegos J, Vallot C, Castoro RJ, Chung W, Maegawa S, Oki Y, Kondo Y, Jelinek J, Shen L et al (2010) Genome architecture marked by retrotransposons modulates predisposition to DNA methylation in cancer. Genome Res 20:1369–1382PubMedCrossRefGoogle Scholar
  23. Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG (1998) Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res 58:4515–4518PubMedGoogle Scholar
  24. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92PubMedCrossRefGoogle Scholar
  25. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–6894PubMedCrossRefGoogle Scholar
  26. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492PubMedCrossRefGoogle Scholar
  27. Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL, Venter JC, Wilson RK et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234PubMedCrossRefGoogle Scholar
  28. Goodier JL, Ostertag EM, Engleka KA, Seleme MC, Kazazian HH Jr (2004) A potential role for the nucleolus in L1 retrotransposition. Hum Mol Genet 13:1041–1048PubMedCrossRefGoogle Scholar
  29. Gregory SG, Sekhon M, Schein J, Zhao S, Osoegawa K, Scott CE, Evans RS, Burridge PW, Cox TV, Fox CA et al (2002) A physical map of the mouse genome. Nature 418:743–750PubMedCrossRefGoogle Scholar
  30. Guz J, Foksiński M, Oliński R (2010) Global DNA hipomethylation–the meaning in carcinogenesis. Postepy Biochem 56:16–21PubMedGoogle Scholar
  31. Han K, Sen SK, Wang J, Callinan PA, Lee J, Cordaux R, Liang P, Batzer MA (2005) Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucleic Acids Res 33:4040–4052PubMedCrossRefGoogle Scholar
  32. Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA (2008) L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci USA 105:19366–19371PubMedCrossRefGoogle Scholar
  33. Herman JG (1999) Hypermethylation of tumor suppressor genes in cancer. Semin Cancer Biol 9:359–367PubMedCrossRefGoogle Scholar
  34. Herman JG, Baylin SB (2000) Promoter-region hypermethylation and gene silencing in human cancer. Curr Top Microbiol Immunol 249:35–54PubMedCrossRefGoogle Scholar
  35. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054PubMedCrossRefGoogle Scholar
  36. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525–4530PubMedGoogle Scholar
  37. Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB (1997) Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 57:837–841PubMedGoogle Scholar
  38. Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83:296–321PubMedCrossRefGoogle Scholar
  39. Issa JP (2000) The epigenetics of colorectal cancer. Ann N Y Acad Sci 910:140–153PubMedCrossRefGoogle Scholar
  40. Jackson K, Yu MC, Arakawa K, Fiala E, Youn B, Fiegl H, Müller-Holzner E, Widschwendter M, Ehrlich M (2004) DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biol Ther 3:1225–1231Google Scholar
  41. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428PubMedCrossRefGoogle Scholar
  42. Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, Jessup JM, Kolodner R (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57:808–811PubMedGoogle Scholar
  43. Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, Selhub J, Mason JB (1994) Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer 74:893–899PubMedCrossRefGoogle Scholar
  44. Kim SJ, Kelly WK, Fu A, Haines K, Hoffman A, Zheng T, Zhu Y (2011) Genome-wide methylation analysis identifies involvement of TNF-alpha mediated cancer pathways in prostate cancer. Cancer Lett 302:47–53PubMedCrossRefGoogle Scholar
  45. Kwon HJ, Kim JH, Bae JM, Cho NY, Kim TY, Kang GH (2010) DNA methylation changes in ex-adenoma carcinoma of the large intestine. Virchows Arch 457:433–441PubMedCrossRefGoogle Scholar
  46. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  47. Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L et al (1993) Identification of the von Hippel–Lindau disease tumor suppressor gene. Science 260:1317–1320PubMedCrossRefGoogle Scholar
  48. Löwer R, Löwer J, Kurth R (1996) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci USA 93:5177–5184PubMedCrossRefGoogle Scholar
  49. Martin MA, Bryan T, Rasheed S, Khan AS (1981) Identification and cloning of endogenous retroviral sequences present in human DNA. Proc Natl Acad Sci USA 78:4892–4896PubMedCrossRefGoogle Scholar
  50. Mayer J, Meese E (2005) Human endogenous retroviruses in the primate lineage and their influence on host genomes. Cytogenet Genome Res 110:448–456PubMedCrossRefGoogle Scholar
  51. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1:686–692PubMedCrossRefGoogle Scholar
  52. Mikkelsen TS, Hillier LW, Eichler EE, Zody MC, Zody MC, Jaffe DB, Yang SP, Enard W, Hellmann I, Lindblad-Toh K et al (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87CrossRefGoogle Scholar
  53. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Yoon SC, Ye K, Cheetham RK et al (2011) 1000 Genomes Project. Mapping copy number variation by population-scale genome sequencing. Nature 470:59–65PubMedCrossRefGoogle Scholar
  54. Muir A, Lever A, Moffett A (2004) Expression and functions of human endogenous retroviruses in the placenta: an update. Placenta 25(Suppl A):S16–S25PubMedCrossRefGoogle Scholar
  55. Muster T, Waltenberger A, Grassauer A, Hirschl S, Caucig P, Romirer I, Fodinger D, Seppele H, Schanab O, Magin-Lachmann C et al (2003) An endogenous retrovirus derived from human melanoma cells. Cancer Res 63:8735–8741PubMedGoogle Scholar
  56. Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17:619–621PubMedCrossRefGoogle Scholar
  57. Ogino S, Kawasaki T, Nosho K, Ohnishi M, Suemoto Y, Kirkner GJ, Fuchs CS (2008) LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer 122:2767–2773PubMedCrossRefGoogle Scholar
  58. Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538PubMedCrossRefGoogle Scholar
  59. Otterson GA, Khleif SN, Chen W, Coxon AB, Kaye FJ (1995) CDKN2 gene silencing in lung cancer by DNA hypermethylation and kinetics of p16INK4 protein induction by 5-aza 2′deoxycytidine. Oncogene 11:1211–1216PubMedGoogle Scholar
  60. Patzke S, Lindeskog M, Munthe E, Aasheim HC (2002) Characterization of a novel humanendogenous retrovirus, HERV-H/F, expressed in human leukemia cell lines. Virology 303:164–173PubMedCrossRefGoogle Scholar
  61. Prowse AH, Webster AR, Richards FM, Richard S, Olschwang S, Resche F, Affara NA, Maher ER (1997) Somatic inactivation of the VHL gene in Von Hippel–Lindau disease tumors. Am J Hum Genet 60:765–771PubMedGoogle Scholar
  62. Qian XC, Brent TP (1997) Methylation hot spots in the 5′ flanking region denote silencing of the O6-methylguanine-DNA methyltransferase gene. Cancer Res 57:3672–3677PubMedGoogle Scholar
  63. Qu G, Dubeau L, Narayan A, Yu MC, Ehrlich M (1999) Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mutat Res 423:91–101PubMedCrossRefGoogle Scholar
  64. Rodriguez J, Vives L, Jorda M, Morales C, Munoz M, Vendrell E, Peinado MA (2008) Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res 36:770–784PubMedCrossRefGoogle Scholar
  65. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, San Jose-Eneriz E, Garate L, Cordeu L, Cervantes F, Prosper F et al (2008) Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia. Leuk Res 32:487–490PubMedCrossRefGoogle Scholar
  66. Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP (1991) Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48:880–888PubMedGoogle Scholar
  67. Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39:166–174PubMedCrossRefGoogle Scholar
  68. Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, Hobolth A, Lappalainen T, Mailund T, Marques-Bonet T et al (2012) Insights into hominid evolution from the gorilla genome sequence. Nature 483:169–175PubMedCrossRefGoogle Scholar
  69. Shen L, Fang J, Qiu D, Zhang T, Yang J, Chen S, Xiao S (1998) Correlation between DNA methylation and pathological changes in human hepatocellular carcinoma. Hepatogastroenterology 45:1753–1759PubMedGoogle Scholar
  70. Stoye JP (2001) Endogenous retroviruses: still active after all these years? Curr Biol 11:R914–R916PubMedCrossRefGoogle Scholar
  71. Tellez CS, Shen L, Estecio MR, Jelinek J, Gershenwald JE, Issa JP (2009) CpG island methylation profiling in human melanoma cell lines. Melanoma Res 19:146–155PubMedCrossRefGoogle Scholar
  72. Ushijima T (2005) Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 5:223–231PubMedCrossRefGoogle Scholar
  73. Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW, Johanning GL (2003a) Quantitationof HERV-K env gene expression and splicing in human breast cancer. Oncogene 22:1528–1535PubMedCrossRefGoogle Scholar
  74. Wang-Johanning F, Frost AR, Jian B, Azerou R, Lu DW, Chen DT, Johanning GL (2003b) Detecting the expression of human endogenous retrovirus E envelope transcripts inhuman prostate adenocarcinoma. Cancer 98:187–197PubMedCrossRefGoogle Scholar
  75. Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, Belov K, Miller W, Clarke L, Chinwalla AT et al (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175–183PubMedCrossRefGoogle Scholar
  76. Whitelaw E, Martin DI (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet 27:361–365PubMedCrossRefGoogle Scholar
  77. Widschwendter M, Jiang G, Woods C, Müller HM, Fiegl H, Goebel G, Marth C, Müller-Holzner E, Zeimet AG, Laird PW et al (2004) DNA hypomethylation and ovarian cancer biology. Cancer Res 64:4472–4480Google Scholar
  78. Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD, Yang AS, Jones PA, Liang G (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6:e1000917PubMedCrossRefGoogle Scholar
  79. Yang AS, Estécio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38PubMedCrossRefGoogle Scholar
  80. Yi JM, Kim HS (2006) Molecular evolution of the HERV-E family in primates. Arch Virol 151:1107–1116PubMedCrossRefGoogle Scholar
  81. Yi JM, Kim TH, Huh JW, Park KS, Jang SB, Kim HM, Kim HS (2004) Human endogenous retroviral elements belonging to the HERV-S family from human tissues, cancer cells, and primates: expression, structure, phylogeny and evolution. Gene 342:283–292PubMedCrossRefGoogle Scholar
  82. Yi JM, Kim HM, Kim HS (2006) Human endogenous retrovirus HERV-H family in human tissues and cancer cells: expression, identification, and phylogeny. Cancer Lett 231:228–239PubMedCrossRefGoogle Scholar
  83. Yi JM, Schuebel K, Kim HS (2007) Molecular genetic analyses of human endogenous retroviral elements belonging to the HERV-P family in primates, human tissues, and cancer cells. Genomics 89:1–9PubMedCrossRefGoogle Scholar
  84. Yoshida T, Yamashita S, Takamura-Enya T, Niwa T, Ando T, Enomoto S, Maekita T, Nakazawa K, Tatematsu M, Ichinose M et al (2011) Alu and Satalpha hypomethylation in Helicobacter pylori-infected gastric mucosae. Int J Cancer 128:33–39PubMedCrossRefGoogle Scholar

Copyright information

© The Genetics Society of Korea 2013

Authors and Affiliations

  • Kyudong Han
    • 1
  • Jungname Lee
    • 1
  • Heui-Soo Km
    • 2
  • Kwangmo Yang
    • 3
  • Joo Mi Yi
    • 3
  1. 1.Department of Nanobiomedical Science and WCU Research CenterDankook UniversityCheonanSouth Korea
  2. 2.Department of Biological SciencePusan National UniversityBusanSouth Korea
  3. 3.Research InstituteDongnam Institute of Radiological & Medical Sciences (DIRAMS)BusanSouth Korea

Personalised recommendations