Advertisement

Genes & Genomics

, Volume 35, Issue 2, pp 177–183 | Cite as

Transmission ratio distortion in an interspecific cross between Fusarium circinatum and Fusarium subglutinans

  • Lieschen De Vos
  • Nicolaas A. van der Merwe
  • Michael J. Wingfield
  • Alexander A. Myburg
  • Brenda D. Wingfield
Research Article

Abstract

Previously, an interspecific cross between Fusarium circinatum and Fusarium subglutinans was used to generate a genetic linkage map. A ca. 55 % of genotyped markers displayed transmission ratio distortion (TRD) that demonstrated a genome-wide distribution. The working hypothesis for this study was that TRD would be non-randomly distributed throughout the genetic linkage map. This would indicate the presence of distorting loci. Using a genome-wide threshold of α = 0.01, 79 markers displaying TRD were distributed on all 12 linkage groups (LGs). Eleven putative transmission ratio distortion loci (TRDLs), spanning eight LGs, were identified in regions containing three or more adjacent markers displaying distortion. No epistatic interactions were observed between these TRDLs. Thus, it is uncertain whether the genome-wide TRD was due to linkage between markers and genomic regions causing distortion. The parental origins of markers followed a non-random distribution throughout the linkage map, with LGs containing stretches of markers originating from only one parent. Thus, due to the nature of the interspecific cross, the current hypothesis to explain these observations is that the observed genome-wide segregation was caused by the high level of genomic divergence between the parental isolates. Therefore, homologous chromosomes do not align properly during meiosis, resulting in aberrant transmission of markers. This also explains previous observations of the preferential transmission of F. subglutinans alleles to the F1 progeny.

Keywords

Divergence Fusarium circinatum Fusarium subglutinans Interspecific cross Transmission ratio distortion 

Notes

Acknowledgments

This work was supported by the National Research Foundation (NRF), University of Pretoria, Forestry and Agricultural Biotechnology Institute (FABI), the DST/NRF Center of Excellence in Tree Health Biotechnology (CTHB), members of the Tree Protection Co-operative Programme (TPCP), and the Andrew Mellon Foundation.

References

  1. Bowden RL, Fuentes-Bueno I, Leslie JF, Lee J, Lee Y-W (2008) Methods for detecting chromosome rearrangements in Gibberella zeae. Cereal Res Commun 36(Suppl. B):603–608CrossRefGoogle Scholar
  2. Burke JM, Arnold ML (2001) Genetics and the fitness of hybrids. Annu Rev Genet 35:31–52PubMedCrossRefGoogle Scholar
  3. Carson HL, Kaneshiro KY (1976) Drosophila of Hawaii: systematics and ecological genetics. Annu Rev Ecol Syst 7:311–345CrossRefGoogle Scholar
  4. Cheng R, Kleinhofs A, Ukai Y (1998) Method for mapping a partial lethal-factor locus on a molecular-marker linkage map of a backcross and doubled-haploid population. Theor Appl Genet 97:293–298CrossRefGoogle Scholar
  5. De Vos L, Myburg AA, Wingfield MJ, Desjardins AE, Gordon TR, Wingfield BD (2007) Complete genetic linkage maps from an interspecific cross between Fusarium circinatum and Fusarium subglutinans. Fungal Genet Biol 44:701–714PubMedCrossRefGoogle Scholar
  6. De Vos L, Van der Nest MA, Van der Merwe NA, Myburg AA, Wingfield MJ, Wingfield BD (2011) Genetic analysis of growth, morphology and pathogenicity in the F1 progeny of an interspecific cross between Fusarium circinatum and Fusarium subglutinans. Fungal Biol 115:902–908PubMedCrossRefGoogle Scholar
  7. Desjardins AE, Plattner RD, Nelson PE (1997) Production of fumonisin B1 and moniliformin by Gibberella fujikuroi from rice from various geographic areas. Appl Environ Microbiol 63:1838–1842PubMedGoogle Scholar
  8. Desjardins AE, Plattner RD, Gordon TR (2000) Gibberella fujikuroi mating population A and Fusarium subglutinans from teosinte species and maize from Mexico and Central America. Mycol Res 104:865–872CrossRefGoogle Scholar
  9. Dobzhansky T (1951) Genetics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  10. Friel CJ, Desjardins AE, Kirkpatrick SC, Gordon TR (2007) Evidence for recombination and segregation of pathogenicity to pine in a hybrid cross between Gibberella circinata and G. subglutinans. Mycol Res 111:827–831PubMedCrossRefGoogle Scholar
  11. Fusarium Comparative Sequencing Project (2011) Broad Institute of Harvard and MIT. http://0-www.broadinstitute.org.innopac.up.ac.za/
  12. Gale LR, Bryant JD, Calvo S, Giese H, Katan T, O’Donnell K, Suga H, Taga M, Usgaard TR, Ward TJ, Kistler HC (2005) Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations. Genetics 171:985–1001PubMedCrossRefGoogle Scholar
  13. Giruad T, Refrégier G, Le Gac M, de Vienne DM, Hood ME (2008) Speciation in fungi. Fungal Genet Biol 45:791–802CrossRefGoogle Scholar
  14. Grandillo S, Tanksley SD (1996) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965CrossRefGoogle Scholar
  15. Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38PubMedCrossRefGoogle Scholar
  16. Jenczewski E, Gherardi M, Bonnin I, Prosperi JM, Olivieri I, Huguet T (1997) Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). Theor Appl Genet 94:682–691CrossRefGoogle Scholar
  17. Jiang C-X, Chee PW, Draye X, Morrell PL, Smith CW, Paterson AH (2000) Multilocus interactions restrict gene introgression in interspecific populations of polyploidy Gossypium (cotton). Evolution 54:798–814PubMedGoogle Scholar
  18. Jurgenson JE, Bowden RL, Zeller KA, Leslie JF, Alexander NJ, Plattner RD (2002) A genetic map of Gibberella zeae (Fusarium graminearum). Genetics 160:1451–1460PubMedGoogle Scholar
  19. Kathariou S, Spieth PT (1982) Spore killer polymorphism in Fusarium moniliforme. Genetics 102:19–24PubMedGoogle Scholar
  20. Klug WS, Cummings MR (1994) Concepts of genetics. Prentice-Hall, Inc., Englewood CliffsGoogle Scholar
  21. Lee H-R, Bae I-H, Park S-W, Kim H-J, Min W-K, Han J-H, Kim K-T, Kim BD (2009) Construction of an integrated pepper map using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC end sequences. Mol Cells 27:21–37PubMedCrossRefGoogle Scholar
  22. Lepoint PCE, Munaut FTJ, Maraite HMM (2005) Gibberella xylarioides sensu lato from Coffea canephora: a new mating population in the Gibberella fujikuroi species complex. Appl Environ Microbiol 71:8466–8471PubMedCrossRefGoogle Scholar
  23. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, OxfordGoogle Scholar
  24. Leslie JF, Zeller KA, Logrieco A, Mulé G, Moretti A, Ritieni A (2004a) Species diversity of and toxin production by Gibberella fujikuroi species complex strains isolated from native prairie grasses in Kansas. Appl Environ Microbiol 70:2254–2262PubMedCrossRefGoogle Scholar
  25. Leslie JF, Zeller KA, Wohler M, Summerell BA (2004b) Interfertility of two mating populations in the Gibberella fujikuroi species complex. Eur J Plant Pathol 110:611–618CrossRefGoogle Scholar
  26. Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628PubMedCrossRefGoogle Scholar
  27. Mayr E (1940) Speciation phenomena in birds. Am Nat 74:249–278CrossRefGoogle Scholar
  28. McDaniel SF, Willis JH, Shaw AJ (2007) A linkage map reveals a complex basis for segregation distortion in an interpopulation cross in the moss Ceratodon purpureus. Genetics 176:2489–2500PubMedCrossRefGoogle Scholar
  29. Myburg AA, Vogl C, Griffin AR, Sederoff RR, Whetten RW (2004) Genetics of postzygotic isolation in eucalyptus: whole-genome analysis of barriers to introgression in a wide interspecific cross of Eucalyptus grandis and E. globulus. Genetics 166:1405–1418PubMedCrossRefGoogle Scholar
  30. Nirenberg HI, O’Donnell K (1998) New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90:434–458CrossRefGoogle Scholar
  31. Raju NB (1994) Ascomycete spore killers: chromosomal elements that distort genetic ratios among the products of meiosis. Mycologia 86:461–473CrossRefGoogle Scholar
  32. Samuels GJ, Nirenberg HI, Seifert KA (2001) Perithecial species of Fusarium. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) Fusarium: Paul E. Nelson memorial symposium. APS Press, St. Paul, pp 1–14Google Scholar
  33. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  34. Whitkus R (1998) Genetics of adaptive radiation in Hawaiian and Cook Island species of tetramolopium (Asteraceae). II. Genetic linkage map and its implications for interspecific breeding barriers. Genetics 150:1209–1216PubMedGoogle Scholar
  35. Wingfield BD, Steenkamp ET, Santana QC, Coetzee MPA, Bam S, Barnes I, Beukes CW, Chan AWY, De Vos L, Fourie G et al (2012) First fungal genome sequence from Africa: a preliminary analysis. S Afr J Sci 108:1–9Google Scholar
  36. Xu J-R, Yan K, Dickman MB, Leslie JF (1995) Electrophoretic karyotypes distinguish the biological species of Gibberella fujikuroi (Fusarium section Liseola). Mol Plant-Microbe Interact 8:74–84CrossRefGoogle Scholar
  37. Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. Bot Gaz 147:355–358CrossRefGoogle Scholar
  38. Zeller KA, Summerell BA, Bullock S, Leslie JF (2003) Gibberella konza (Fusarium konzum) sp. nov. from prairie grasses, a new species in the Gibberella fujikuroi species complex. Mycologia 95:943–954PubMedCrossRefGoogle Scholar
  39. Zolan ME (1995) Chromosome-length polymorphism in fungi. Microbiol Rev 59:686–698PubMedGoogle Scholar

Copyright information

© The Genetics Society of Korea 2013

Authors and Affiliations

  • Lieschen De Vos
    • 1
  • Nicolaas A. van der Merwe
    • 1
  • Michael J. Wingfield
    • 2
  • Alexander A. Myburg
    • 1
  • Brenda D. Wingfield
    • 1
  1. 1.Department of GeneticsForestry and Agricultural Biotechnology Institute (FABI), University of PretoriaPretoriaSouth Africa
  2. 2.Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa

Personalised recommendations