Genes & Genomics

, Volume 34, Issue 5, pp 517–528 | Cite as

Intragenic long interspersed element-1 sequences promote promoter hypermethylation in lung adenocarcinoma, multiple myeloma and prostate cancer

  • Suphakit Khowutthitham
  • Chumpol Ngamphiw
  • Wachiraporn Wanichnopparat
  • Kulachanya Suwanwongse
  • Sissades Tongsima
  • Chatchawit Aporntewan
  • Apiwat Mutirangura
Research Article

Abstract

In cancers, although the methylation of long interspersed element- 1 sequences (LINE-1s) and tumor suppressor gene promoters are modified in the opposite direction, LINE-1 hypomethylation and promoter hypermethylation of some loci are directly associated. During carcinogenesis, the reduction in LINE-1 methylation occurs. Intragenic LINE-1s produces antisense RNA in introns and reduces mRNA transcription levels. Several antisense RNAs have been reported to mediate methylation of the associated CpG islands. Here we compared genome-wide promoter methylation and expression profiles of LINE-1-hypomethylated malignancies, reported in the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo), including lung adenocarcinoma, multiple myeloma and prostate cancer. Then we analysed a microarray experiment if promoters of a set of genes containing LINE-1s or Alu are commonly methylated. Finally, the differences in structural characteristics of LINE-1s were compared between LINE-1 groups. Here we found that genes that contained LINE-1s were frequently repressed (p < 0.01) and possessed promoter hypermethylation (p < 1.0E-4). The expression levels of genes containing LINE-1s with promoter hypermethylation were the lowest. Finally, the genomic distributions of gene-repressing LINE-1s and promoter-hypermethylating LINE-1s were neither co-segregated nor randomly segregated. In conclusion, cancer-associated intragenic LINE-1 epigenetic change promotes promoter hypermethylation and represses gene expression. These two mechanisms are independently influenced by genomic locations but synergistically down-regulate genes.

Keywords

Antisense RNA Cancer epigenomics Gene promoter hypermethylation Global hypomethylation Intragenic LINE-1 Long interspersed element-1 LINE-1 hypomethylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13258_2012_58_MOESM1_ESM.pdf (61 kb)
Supplementary material, approximately 60.9 KB.
13258_2012_58_MOESM2_ESM.pdf (123 kb)
Supplementary material, approximately 122 KB.
13258_2012_58_MOESM3_ESM.pdf (834 kb)
Supplementary material, approximately 833 KB.
13258_2012_58_MOESM4_ESM.pdf (350 kb)
Supplementary material, approximately 349 KB.

References

  1. Aporntewan C and Mutirangura A (2011) Connection up- and down-regulation expression analysis of microarrays (CU- DREAM): a physiogenomic discovery tool. Asian Biomed. 5: 257–262.Google Scholar
  2. Aporntewan C, Phokaew C, Piriyapongsa J, Ngamphiw C, Ittiwut C, Tongsima S and Mutirangura A (2011) Hypomethylation of intragenic LINE-1 represses transcription in cancer cells through AGO2. PLoS One 6: e17934.PubMedCrossRefGoogle Scholar
  3. Baba Y, Huttenhower C, Nosho K, Tanaka N, Shima K, Hazra A, Schernhammer ES, Hunter DJ, Giovannucci EL, Fuchs CS, et al. (2010) Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol. Cancer 9: 125.PubMedCrossRefGoogle Scholar
  4. Badge RM, Alisch RS and Moran JV (2003) ATLAS: A system to selectively identify human-specific L1 insertions. Am. J. Hum. Genet. 72: 823–838.PubMedCrossRefGoogle Scholar
  5. Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, Rudnev D, Lash AE, Fujibuchi W and Edgar R (2005) NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res. 33: D562–D566.PubMedCrossRefGoogle Scholar
  6. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, et al. (2009) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res. 37: D885–D890.PubMedCrossRefGoogle Scholar
  7. Belancio VP, Hedges DJ and Deininger P (2006) LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Res. 34: 1512–1521.PubMedCrossRefGoogle Scholar
  8. Bollati V, Fabris S, Pegoraro V, Ronchetti D, Mosca L, Deliliers GL, Motta V, Bertazzi PA, Baccarelli A and Neri A (2009) Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcinogenesis 30: 1330–1335.PubMedCrossRefGoogle Scholar
  9. Brait M and Sidransky D (2011) Cancer epigenetics: above and beyond. Toxicol. Mech. Methods 21: 275–288.PubMedCrossRefGoogle Scholar
  10. Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D, Voravud N, Sriuranpong V and Mutirangura A (2004) Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 23: 8841–8846.PubMedCrossRefGoogle Scholar
  11. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L and Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395: 89–93.PubMedCrossRefGoogle Scholar
  12. Cho NY, Kim BH, Choi M, Yoo EJ, Moon KC, Cho YM, Kim D and Kang GH (2007) Hypermethylation of CpG island loci and hypomethylation of LINE-I and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J. Pathol. 211: 269–277.PubMedCrossRefGoogle Scholar
  13. Choi IS, Estecio MR, Nagano Y, Kim DH, White JA, Yao JC, Issa JP and Rashid A (2007) Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod. Pathol. 20: 802–810.PubMedCrossRefGoogle Scholar
  14. Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, Attreed M, Avner P, Wutz A, Barillot E, et al. (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141: 956–969.PubMedCrossRefGoogle Scholar
  15. Christensen BC, Marsit CJ, Houseman EA, Godleski JJ, Longacker JL, Zheng S, Yeh RF, Wrensch MR, Wiemels JL, Karagas MR, et al. (2009) Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Res. 69: 6315–6321.PubMedCrossRefGoogle Scholar
  16. Cordaux R and Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10: 691–703.PubMedCrossRefGoogle Scholar
  17. Das PM and Singal R (2004) DNA methylation and cancer. J. Clin. Oncol. 22: 4632–4642.PubMedCrossRefGoogle Scholar
  18. Daskalos A, Logotheti S, Markopoulou S, Xinarianos G, Gosney JR, Kastania AN, Zoumpourlis V, Field JK and Liloglou T (2011) Global DNA hypomethylation-induced Delta Np73 transcriptional activation in non-small cell lung cancer. Cancer Lett. 300: 79–86.PubMedCrossRefGoogle Scholar
  19. Edwards CA and Ferguson-Smith AC (2007) Mechanisms regulating imprinted genes in clusters. Curr. Opin. Cell Biol. 19: 281–289.PubMedCrossRefGoogle Scholar
  20. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21: 5400–5413.PubMedCrossRefGoogle Scholar
  21. Ehrlich M, Jiang G, Fiala E, Dome JS, Yu MC, Long TI, Youn B, Sohn OS, Widschwendter M, Tomlinson GE, et al. (2002) Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene 21: 6694–6702.PubMedCrossRefGoogle Scholar
  22. Ehrlich M, Woods CB, Yu MC, Dubeau L, Yang F, Campan M, Weisenberger DJ, Long TI, Youn B, Fiala ES, et al. (2006) Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 25: 2636–2645.PubMedCrossRefGoogle Scholar
  23. Ewing AD and Kazazian HH (2011) Whole-genome resequencing allows detection of many rare LINE-1 insertion alleles in humans. Genome Res. 21: 985–990.PubMedCrossRefGoogle Scholar
  24. Feinberg AP and Tycko B (2004) The history of cancer epigenetics. Nat. Rev. Cancer 4: 143–153.PubMedCrossRefGoogle Scholar
  25. Florl AR, Steinhoff C, Muller M, Seifert HH, Hader C, Engers R, Ackermann R and Schulz WA (2004) Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br. J. Cancer 91: 985–994.PubMedGoogle Scholar
  26. Gogvadze E and Buzdin A (2009) Retroelements and their impact on genome evolution and functioning. Cell. Mol. Life Sci. 66: 3727–3742.PubMedCrossRefGoogle Scholar
  27. Gutierrez NC, Ocio EM, Rivas JDL, Maiso P, Delgado M, Ferminan E, Arcos MJ, Sanchez ML, Hernandez JM and Miguel JFS (2007) Gene expression profiling of B lymphocytes and plasma cells from Waldenstrom’s macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals. Leukemia 21: 541–549.PubMedCrossRefGoogle Scholar
  28. Herman JG (2005) Epigenetic changes in cancer and preneoplasia. Cold Spring Harb.Symp. Quant. Biol. 70: 329–333.PubMedCrossRefGoogle Scholar
  29. Iacopetta B, Heyworth J, Girschik J, Grieu F, Clayforth C and Fritschi L (2009) The MTHFR C677T and DeltaDNMT3B C-149T polymorphisms confer different risks for right- and left-sided colorectal cancer. Int. J. Cancer 125: 84–90.PubMedCrossRefGoogle Scholar
  30. Igarashi S, Suzuki H, Niinuma T, Shimizu H, Nojima M, Iwaki H, Nobuoka T, Nishida T, Miyazaki Y, Takamaru H, et al. (2010) A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointestinal stromal tumors. Clin. Cancer Res. 16: 5114–5123.PubMedCrossRefGoogle Scholar
  31. Iramaneerat K, Rattanatunyong P, Khemapech N, Triratanachat S and Mutirangura A (2011) HERV-K hypomethylation in ovarian clear cell carcinoma is associated with a poor prognosis and platinum resistance. Int. J. Gynecol. Cancer 21: 51–57.PubMedCrossRefGoogle Scholar
  32. Jhavar S, Brewer D, Edwards S, Kote-Jarai Z, Attard G, Clark J, Flohr P, Christmas T, Thompson A, Parker M, et al. (2009) Integration of ERG gene mapping and gene-expression profiling identifies distinct categories of human prostate cancer. BJU Int. 103: 1256–1269.PubMedCrossRefGoogle Scholar
  33. Jin P and Warren ST (2000) Understanding the molecular basis of fragile X syndrome. Hum. Mol. Genet. 9: 901–908.PubMedCrossRefGoogle Scholar
  34. Jintaridth P and Mutirangura A (2010) Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol. Genomics 41: 194–200.PubMedCrossRefGoogle Scholar
  35. Kim BH, Cho NY, Shin SH, Kwon HJ, Jang JJ and Kang GH (2009) CpG island hypermethylation and repetitive DNA hypomethylation in premalignant lesion of extrahepatic cholangiocarcinoma. Virchows Arch. 455: 343–351.PubMedCrossRefGoogle Scholar
  36. Kitkumthorn N and Mutirangura A (2011) Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin. Epigenetics 2: 315–330.PubMedCrossRefGoogle Scholar
  37. Kobayashi Y, Absher DM, Gulzar ZG, Young SR, McKenney JK, Peehl DM, Brooks JD, Myers RM and Sherlock G (2011) DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res. 21: 1017–1027.PubMedCrossRefGoogle Scholar
  38. Kongruttanachok N, Phuangphairoj C, Thongnak A, Ponyeam W, Rattanatanyong P, Pornthanakasem W and Mutirangura A (2010) Research Replication independent DNA double-strand break retention may prevent genomic instability. Mol. Cancer 9: 70.PubMedCrossRefGoogle Scholar
  39. Levy A, Sela N and Ast G (2008) TranspoGene and micro-TranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates. Nucleic Acids Res. 36: D47–D52.PubMedCrossRefGoogle Scholar
  40. Nakkuntod J, Avihingsanon Y, Mutirangura A and Hirankarn N (2011) Hypomethylation of LINE-1 but not Alu in lymphocyte subsets of systemic lupus erythematosus patients. Clin. Chim. Acta. 412: 1457–1461.PubMedCrossRefGoogle Scholar
  41. Navarro P, Pichard S, Ciaudo C, Avner P and Rougeulle C (2005) Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. Genes Dev. 19: 1474–1484.PubMedCrossRefGoogle Scholar
  42. Ogino S, Kawasaki T, Nosho K, Ohnishi M, Suemoto Y, Kirkner GJ and Fuchs CS (2008) LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int. J. Cancer 122: 2767–2773.PubMedCrossRefGoogle Scholar
  43. Park SY, Yoo EJ, Cho NY, Kim N and Kang GH (2009) Comparison of CpG island hypermethylation and repetitive DNA hypomethylation in premalignant stages of gastric cancer, stratified for Helicobacter pylori infection. J. Pathol. 219: 410–416.PubMedCrossRefGoogle Scholar
  44. Penzkofer T, Dandekar T and Zemojtel T (2005) L1Base: from functional annotation to prediction of active LINE-1 elements. Nucleic Acids Res. 33: D498–D500.PubMedCrossRefGoogle Scholar
  45. Phokaew C, Kowudtitham S, Subbalekha K, Shuangshoti S and Mutirangura A (2008) LINE-1 methylation patterns of different loci in normal and cancerous cells. Nucleic Acids Res. 36: 5704–5712.PubMedCrossRefGoogle Scholar
  46. Poage GM, Houseman EA, Christensen BC, Butler RA, Avissar-Whiting M, McClean MD, Waterboer T, Pawlita M, Marsit CJ and Kelsey KT (2011) Global hypomethylation identifies Loci targeted for hypermethylation in head and neck cancer. Clin. Cancer Res. 17: 3579–3589.PubMedCrossRefGoogle Scholar
  47. Pornthanakasem W, Kongruttanachok N, Phuangphairoj C, Suyarnsestakorn C, Sanghangthum T, Oonsiri S, Ponyeam W, Thanasupawat T, Matangkasombut O and Mutirangura A (2008) LINE-1 methylation status of endogenous DNA double-strand breaks. Nucleic Acids Res. 36: 3667–3675.PubMedCrossRefGoogle Scholar
  48. Pornthanakasem W and Mutirangura A (2004) LINE-1 insertion dimorphisms identification by PCR. Biotechniques 37: 750, 752.PubMedGoogle Scholar
  49. Sanchez-Palencia A, Gomez-Morales M, Gomez-Capilla JA, Pedraza V, Boyero L, Rosell R and Farez-Vidal ME (2011) Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int. J. Cancer 129: 355–364.PubMedCrossRefGoogle Scholar
  50. Sharp AJ, Stathaki E, Migliavacca E, Brahmachary M, Montgomery SB, Dupre Y and Antonarakis SE (2011) DNA methylation profiles of human active and inactive X chromosomes. Genome Res. 21: 1592–1600.PubMedCrossRefGoogle Scholar
  51. Singer H, Walier M, Nusgen N, Meesters C, Schreiner F, Woelfle J, Fimmers R, Wienker T, Kalscheuer VM, Becker T, et al. (2012) Methylation of L1Hs promoters is lower on the inactive X, has a tendency of being higher on autosomes in smaller genomes and shows inter-individual variability at some loci. Hum. Mol. Genet. 21: 219–235.PubMedCrossRefGoogle Scholar
  52. Ting AH, Schuebel KE, Herman JG and Baylin SB (2005) Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat. Genet. 37: 906–910.PubMedCrossRefGoogle Scholar
  53. Trankenschuh W, Puls F, Christgen M, Albat C, Heim A, Poczkaj J, Fleming P, Kreipe H and Lehmann U (2010) Frequent and distinct aberrations of DNA methylation patterns in fibrolamellar carcinoma of the liver. PLoS One 5.Google Scholar
  54. Tufarelli C, Stanley JAS, Garrick D, Sharpe JA, Ayyub H, Wood WG and Higgs DR (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Genet. 34: 157–165.PubMedCrossRefGoogle Scholar
  55. Walker BA, Wardell CP, Chiecchio L, Smith EM, Boyd KD, Neri A, Davies FE, Ross FM and Morgan GJ (2011) Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood 117: 553–562.PubMedCrossRefGoogle Scholar
  56. Woloszynska-Read A, Zhang W, Yu J, Link PA, Mhawech-Fauceglia P, Collamat G, Akers SN, Ostler KR, Godley LA, Odunsi K, et al. (2011) Coordinated cancer germline antigen promoter and global DNA hypomethylation in ovarian cancer: association with the BORIS/CTCF expression ratio and advanced stage. Clin. Cancer Res. 17: 2170–2180.PubMedCrossRefGoogle Scholar
  57. Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF and Barlow DP (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389: 745–749.PubMedCrossRefGoogle Scholar
  58. Yamamoto E, Toyota M, Suzuki H, Kondo Y, Sanomura T, Murayama Y, Ohe-Toyota M, Maruyama R, Nojima M, Ashida M, et al. (2008) LINE-1 hypomethylation is associated with increased CpG island methylation in Helicobacter pylori-related enlarged-fold gastritis. Cancer Epidemiol. Biomarkers Prev. 17: 2555–2564.PubMedCrossRefGoogle Scholar
  59. Zhang HM and Zhu JK (2011) RNA-directed DNA methylation. Curr. Opin. Plant Biol. 14: 142–147.PubMedCrossRefGoogle Scholar
  60. Zhu ZZ, Sparrow D, Hou LF, Tarantini L, Bollati V, Litonjua AA, Zanobetti A, Vokonas P, Wright RO, Baccarelli A, et al. (2011) Repetitive element hypomethylation in blood leukocyte DNA and cancer incidence, prevalence, and mortality in elderly individuals: the Normative Aging Study. Cancer Causes Control 22: 437–447.PubMedCrossRefGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Suphakit Khowutthitham
    • 1
  • Chumpol Ngamphiw
    • 1
    • 2
  • Wachiraporn Wanichnopparat
    • 3
  • Kulachanya Suwanwongse
    • 3
  • Sissades Tongsima
    • 2
    • 6
  • Chatchawit Aporntewan
    • 4
    • 6
  • Apiwat Mutirangura
    • 5
    • 6
  1. 1.Inter-Department Program of Biomedical Sciences, Faculty of Graduate SchoolChulalongkorn UniversityBangkokThailand
  2. 2.Genome InstituteNational Center for Genetic Engineering and BiotechnologyKlong Luang, Pathum ThaniThailand
  3. 3.Faculty of MedicineChulalongkorn UniversityBangkokThailand
  4. 4.Department of Mathematics and Computer Science, Faculty of ScienceChulalongkorn UniversityRama IV, BangkokThailand
  5. 5.Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
  6. 6.Center of Excellence in Molecular Genetics of Cancer and Human DiseasesChulalongkorn UniversityBangkokThailand

Personalised recommendations