Genes & Genomics

, Volume 34, Issue 2, pp 205–216 | Cite as

Analysis of putative miRNA function using a novel approach, GAPPS-miRTarGE

Research Article


Deciphering the function of miRNA is one of the most important research subjects directed toward understanding the regulation of gene expression. Several experimental methodologies and bioinformatics programs have been developed, however, elucidating miRNA function has not been an easy task. Herein, we suggest a new method, GAPPS-miRTarGE, which is a novel methodology for predicting miRNA function based on the proportion of mRNA targets expressed during embryonic developmental stages, the Theilers stages (TS), in mice. GAPPS-miRTarGE is essentially a computational approach that groups miRNAs using shared expression patterns of their target genes during the 28 different TS. In this study, we present not only several examples derived from the GAPPS-miRTarGE analyses that confirm previously known miRNA functions but also examples of function prediction for valid but functionally unknown miRNAs. Furthermore, we show that tissue-centered GAPPS-miRTarGE, such as brain-centered or heart-centered, is useful for predicting miRNA function on a more detailed level.


Prediction of microRNA function miRNA target mRNA expression profile Embryonic developmental stage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13258_2011_233_MOESM1_ESM.xls (179 kb)
Supplementary material, approximately 179 KB.
13258_2011_233_MOESM2_ESM.xls (137 kb)
Supplementary material, approximately 137 KB.
13258_2011_233_MOESM3_ESM.xls (137 kb)
Supplementary material, approximately 137 KB.
13258_2011_233_MOESM4_ESM.xlsx (55 kb)
Supplementary material, approximately 54.6 KB.


  1. Agrawal R, Tran U and Wessely O (2009) The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 136: 3927–3936.PubMedCrossRefGoogle Scholar
  2. Baek D, Villen J, Shin C, Camargo FD, Gygi SP and Bartel DP (2008) The impact of microRNAs on protein output. Nature 455: 64–71.PubMedCrossRefGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.PubMedCrossRefGoogle Scholar
  4. Betel D, Wilson M, Gabow A, Marks DS and Sander C (2008) The resource: targets and expression. Nucleic Acids Res. 36: D149–D153.Google Scholar
  5. Bhardwaj A, Singh S and Singh AP (2010) MicroRNA-based Cancer Therapeutics: Big Hope from Small RNAs. Mol. Cell. Pharmacol 2: 213–219.PubMedGoogle Scholar
  6. Blitzblau RC and Weidhaas JB (2010) MicroRNA binding-site polymorphisms as potential biomarkers of cancer risk. Mol. Diagn. Ther. 14: 335–342.PubMedGoogle Scholar
  7. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, et al. (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324: 1710–1713.PubMedCrossRefGoogle Scholar
  8. Cho S, Jun Y, Lee S, Choi HS, Jung S, Jang Y, Park C, Kim S and Kim W (2011). miRGator v2.0: an integrated system for functional investigation of microRNAs. Nucleic Acids Res. 39: D158–D162.PubMedCrossRefGoogle Scholar
  9. Christensen M and Schratt GM (2009) microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases. Neurosci. Lett. 466: 55–62.PubMedCrossRefGoogle Scholar
  10. Cordes KR and Srivastava D (2009) MicroRNA regulation of cardiovascular development. Circ. Res. 104: 724–732.PubMedCrossRefGoogle Scholar
  11. Darnell DK, Kaur S, Stanislaw S, Konieczka JH, Yatskievych TA and Antin PB (2006) MicroRNA expression during chick embryo development. Dev. Dyn. 235: 3156–3165.PubMedCrossRefGoogle Scholar
  12. Foshay KM and Gallicano GI (2009) miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev. Biol. 326: 431–443.PubMedCrossRefGoogle Scholar
  13. Friedman RC, Farh KK, Burge CB and Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105.PubMedCrossRefGoogle Scholar
  14. Ge X, Wu Q and Wang SM (2006) SAGE detects microRNA precursors. BMC Genomics 7: 285.PubMedCrossRefGoogle Scholar
  15. Gennarino VA, Sardiello M, Avellino R, Meola N, Maselli V, An, S and Cutillo L, Ballabio A and Banfi S (2009) MicroRNA target prediction by expression analysis of host genes. Genome Res. 19: 481–490.PubMedCrossRefGoogle Scholar
  16. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ and Schier AF (2006). “Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs.” Science 312: 75–79.PubMedCrossRefGoogle Scholar
  17. Griffiths-Jones S (2006) miRBase: the microRNA sequence database. Methods Mol. Biol. 342: 129–138.PubMedGoogle Scholar
  18. Griffiths-Jones S (2010) miRBase: microRNA sequences and annotation. Curr. Protoc. Bioinformatics Chapter 12: Unit 12 9 1–10.Google Scholar
  19. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A and Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34: D140–D144.PubMedCrossRefGoogle Scholar
  20. Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res. 36: D154–D158.PubMedCrossRefGoogle Scholar
  21. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP and Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell. 27: 91–105.PubMedCrossRefGoogle Scholar
  22. Hayes B, Fagerlie SR, Ramakrishnan A, Baran S, Harkey M, Graf L, Bar M, Bendoraite A, Tewari M and Torok-Storb B (2008) Derivation, characterization, and in vitro differentiation of canine embryonic stem cells. Stem Cells 26: 465–473.PubMedCrossRefGoogle Scholar
  23. Hebert SS, Horre K, Nicolai L, Bergmans B, Papadopoulou AS, Delacourte A and De Strooper B (2009) MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol. Dis. 33: 422–428.PubMedCrossRefGoogle Scholar
  24. Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argoud K, Fernandez C, Travers ME, et al. (2010) Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53: 1099–1109.PubMedCrossRefGoogle Scholar
  25. Hicks JA, Tembhurne P and Liu HC (2008) MicroRNA expression in chicken embryos. Poult. Sci. 87: 2335–2343.PubMedCrossRefGoogle Scholar
  26. Hoesel B, Bhujabal Z, Przemeck GK, Kurz-Drexler A, Weisenhorn DM, Angelis MH and Beckers J (2010) Combination of in silico and insitu hybridisation approaches to identify potential Dll1 associated miRNAs during mouse embryogenesis. Gene Expr. Patterns 10: 265–273.PubMedCrossRefGoogle Scholar
  27. Hsu PW, Huang HD, Hsu SD, Lin LZ, Tsou AP, Tseng CP, Stadler PF, Washietl S and Hofacker IL (2006) miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res. 34: D135–D139.PubMedCrossRefGoogle Scholar
  28. Hsu SD, Chu CH, Tsou AP, Chen SJ, Chen HC, Hsu PW, Wong YH, Chen YH, Chen GH and Huang HD (2008). miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res. 36: D165–D169.PubMedCrossRefGoogle Scholar
  29. Huang B, Li W, Zhao B, Xia C, Liang R, Ruan K, Jing N and Jin Y (2009) MicroRNA expression profiling during neural differentiation of mouse embryonic carcinoma P19 cells. Acta Biochim. Biophys. Sin. (Shanghai) 41: 231–236.CrossRefGoogle Scholar
  30. Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ and Morris QD (2007) Using expression profiling data to identify human microRNA targets. Nat. Methods 4: 1045–1049.PubMedCrossRefGoogle Scholar
  31. Jiang J, Lee EJ, Gusev Y and Schmittgen TD (2005) Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res. 33: 5394–5403.PubMedCrossRefGoogle Scholar
  32. Kaya KD, Karakulah G, Yakicier CM, Acar AC and Konu O (2011) mESAdb: microRNA expression and sequence analysis database. Nucleic Acids Res. 39: D170–D180.PubMedCrossRefGoogle Scholar
  33. Kertesz M, Iovino N, Unnerstall U, Gaul U and Segal E (2007). “The role of site accessibility in microRNA target recognition.” Nat. Genet. 39: 1278–1284.PubMedCrossRefGoogle Scholar
  34. Kozomara A and Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39: D152–D157.PubMedCrossRefGoogle Scholar
  35. Kusuda R, Cadetti F, Ravanelli MI, Sousa TA, Zanon S, De Lucca FL and Lucas G (2011) Differential expression of microRNAs in mouse pain models. Mol. Pain 7: 17.PubMedCrossRefGoogle Scholar
  36. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W and Tuschl T (2002). “Identification of tissue-specific microRNAs from mouse.” Curr. Biol. 12: 735–739.PubMedCrossRefGoogle Scholar
  37. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, et al. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129: 1401–1414.PubMedCrossRefGoogle Scholar
  38. Lau NC, Lim LP, Weinstein EG and Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858–862.PubMedCrossRefGoogle Scholar
  39. Lau P, Verrier JD, Nielsen JA, Johnson KR, Notterpek L and Hudson LD (2008). Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J. Neurosci. 28: 11720–11730.PubMedCrossRefGoogle Scholar
  40. Lee CT, Risom T and Strauss WM (2006) MicroRNAs in mammalian development. Birth Defects Res. C Embryo Today 78: 129–139.PubMedCrossRefGoogle Scholar
  41. Lee RC and Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862–864.PubMedCrossRefGoogle Scholar
  42. Lee RC, Feinbaum RL and Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.PubMedCrossRefGoogle Scholar
  43. Lewis BP, Burge CB and Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.PubMedCrossRefGoogle Scholar
  44. Li C, Feng Y, Coukos G and Zhang L (2009) Therapeutic microRNA strategies in human cancer. AAPS J. 11: 747–757.PubMedCrossRefGoogle Scholar
  45. Liu CG, Calin GA, Volinia S and Croce CM (2008) MicroRNA expression profiling using microarrays. Nature Protocols 3: 563–578.PubMedCrossRefGoogle Scholar
  46. Makeyev EV, Zhang J, Carrasco MA and Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell. 27: 435–448.PubMedCrossRefGoogle Scholar
  47. Mineno J, Okamoto S, Ando T, Sato M, Chono H, Izu H, Takayama M, Asada K, Mirochnitchenko O, Inouye M and Kato I (2006) The expression profile of microRNAs in mouse embryos. Nucleic Acids Res. 34: 1765–1771.PubMedCrossRefGoogle Scholar
  48. Muhonen P and Holthofer H (2009) Epigenetic and microRNA-mediated regulation in diabetes. Nephrol. Dial. Transplant. 24: 1088–1096.PubMedCrossRefGoogle Scholar
  49. Nam S, Kim B, Shin S and Lee S (2008). miRGator: an integrated system for functional annotation of microRNAs. Nucleic Acids Res. 36: D159–D164.PubMedCrossRefGoogle Scholar
  50. O’Rourke JR, Swanson MS and Harfe BD (2006) MicroRNAs in mammalian development and tumorigenesis. Birth Defects Res. C Embryo Today 78: 172–179.PubMedCrossRefGoogle Scholar
  51. Rajewsky N (2006) microRNA target predictions in animals. Nat. Genet. 38Suppl: S8–13.PubMedCrossRefGoogle Scholar
  52. Ransom J and Srivastava D (2007) The genetics of cardiac birth defects. Seminars in Cell & Developmental Biol. 18: 132–139.CrossRefGoogle Scholar
  53. Ritchie W, Rajasekhar M, Flamant S and Rasko JE (2009) Conserved expression patterns predict microRNA targets. PLoS Comput. Biol. 5: e1000513.PubMedCrossRefGoogle Scholar
  54. Rossi JJ (2009) New hope for a microRNA therapy for liver cancer. Cell 137: 990–992.PubMedCrossRefGoogle Scholar
  55. Ryan BM, Robles AI and Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer 10: 389–402.PubMedCrossRefGoogle Scholar
  56. Sarver AL, Phalak R, Thayanithy V and Subramanian S (2010) S-MED: sarcoma microRNA expression database. Lab. Invest. 90: 753–761.PubMedCrossRefGoogle Scholar
  57. Savolainen SM, Foley JF and Elmore SA (2009). Histology atlas of the developing mouse heart with emphasis on E11.5 to E18.5. Toxicol. Pathol. 37: 395–414.PubMedCrossRefGoogle Scholar
  58. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R and Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58–63.PubMedCrossRefGoogle Scholar
  59. Sethupathy P, Megraw M and Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods 3: 881–886.PubMedCrossRefGoogle Scholar
  60. Shao P, Zhou H, Xiao ZD, He JH, Huang MB, Chen YQ and Qu LH (2008). Identification of novel chicken microRNAs and analysis of their genomic organization. Gene 418: 34–40.PubMedCrossRefGoogle Scholar
  61. Song L and Tuan RS (2006) MicroRNAs and cell differentiation in mammalian development. Birth Defects Res. C Embryo Today 78: 140–149.PubMedCrossRefGoogle Scholar
  62. Spruce T, Pernaute B, Di-Gregorio A, Cobb BS, Merkenschlager M, Manzanares M and Rodriguez TA (2010) An early developmental role for miRNAs in the maintenance of extraembryonic stem cells in the mouse embryo. Dev. Cell 19: 207–219.PubMedCrossRefGoogle Scholar
  63. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, et al. (2004) Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270: 488–498.PubMedCrossRefGoogle Scholar
  64. Sweetman D, Rathjen T, Jefferson M, Wheeler G, Smith TG, Wheeler GN, Munsterberg A and Dalmay T (2006). FGF-4 signaling is involved in mir-206 expression in developing somites of chicken embryos. Dev. Dyn. 235: 2185–2191.PubMedCrossRefGoogle Scholar
  65. Theiler K (1989) The house mouse: atlas of embryonic development. Iintelligence 1: 1.Google Scholar
  66. Thompson JD, Gibson TJ and Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics Chapter 2: Unit 2 3.Google Scholar
  67. Townley-Tilson WH, Callis TE and Wang D (2009) MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int. J. Biochem. Cell Biol. 42: 1252–1255.PubMedCrossRefGoogle Scholar
  68. Tsang J, Zhu J and van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell. 26: 753–767.PubMedCrossRefGoogle Scholar
  69. Tzur G, Israel A, Levy A, Benjamin H, Meiri E, Shufaro Y, Meir K, Khvalevsky E, Spector Y, Rojansky N, et al. (2009) Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development. PLoS One 4: e7511.PubMedCrossRefGoogle Scholar
  70. Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, Alarcon M, Oliver PL, Davies KE, Geschwind DH, et al. (2008) A Functional Genetic Link between Distinct Developmental Language Disorders. New Engl. J. Med. 359: 2337–2345.PubMedCrossRefGoogle Scholar
  71. Wang X (2006) Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res. 34: 1646–1652.PubMedCrossRefGoogle Scholar
  72. Wang X (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14: 1012–1017.PubMedCrossRefGoogle Scholar
  73. Wang X (2009) A PCR-based platform for microRNA expression profiling studies. RNA 15: 716–723.PubMedCrossRefGoogle Scholar
  74. Wheeler G, Ntounia-Fousara S, Granda B, Rathjen T and Dalmay T (2006) Identification of new central nervous system specific mouse microRNAs. FEBS Lett. 580: 2195–2200.PubMedCrossRefGoogle Scholar
  75. Wulczyn FG, Smirnova L, Rybak A, Brandt C, Kwidzinski E, Ninnemann O, Strehle M, Seiler A, Schumacher S and Nitsch R (2007) Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J. 21: 415–426.PubMedCrossRefGoogle Scholar
  76. Zhao Y and Srivastava D (2007) A developmental view of microRNA function. Trends Biochem. Sci. 32: 189–197.PubMedCrossRefGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Seung Gu Park
    • 1
  • Kyung-Hoon Kwon
    • 2
  • Sun Shim Choi
    • 1
  1. 1.Department of Medical Biotechnology, College of Biomedical Science, and Institute of Bioscience & BiotechnologyKangwon National UniversityChuncheonKorea
  2. 2.Korean Basic Science InstituteDaejeonKorea

Personalised recommendations