Advertisement

Genes & Genomics

, Volume 34, Issue 1, pp 83–91 | Cite as

A comparative, BAC end sequence enabled map of the genome of the American mink (Neovison vison)

  • Bernhard F. Benkel
  • Amanda Smith
  • Knud Christensen
  • Razvan Anistoroaei
  • Ye Zhang
  • Christoph W. Sensen
  • Hossain Farid
  • Lyn Paterson
  • Ronald M. Teather
Research Article

Abstract

In this report we present the results of the analysis of approximately 2.7 Mb of genomic information for the American mink (Neovison vison) derived through BAC end sequencing. Our study, which encompasses approximately 1/1000th of the mink genome, suggests that simple sequence repeats (SSRs) are less common in the mink than in the human genome, whereas the average GC content of the mink genome is slightly higher than that of its human counterpart. The 2.7 Mb mink genomic dataset also contained 2,416 repeat elements (retroids and DNA transposons) occupying almost 31% of the sequence space. Among repeat elements, LINEs were over-represented and endogenous viruses (aka LTRs) under-represented in comparison to the human genome. Finally, we present a virtual map of the mink genome constructed with reference to the human and canine genome assemblies using a comparative genomics approach and incorporating over 200 mink BESs with unique hits to the human genome.

Keywords

American mink BAC end sequencing Comparative mapping Structural genomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13258_2011_160_MOESM1_ESM.pdf (48 kb)
Supplementary material, approximately 48.3 KB.
13258_2011_160_MOESM2_ESM.pdf (717 kb)
Supplementary material, approximately 716 KB.
13258_2011_160_MOESM3_ESM.pdf (28 kb)
Supplementary material, approximately 27.9 KB.
13258_2011_160_MOESM4_ESM.pdf (372 kb)
Supplementary material, approximately 372 KB.

References

  1. Anistoroaei R, ten Hallers B, Nefedov M, Christensen K, and de Jong P (2011) Construction of an American mink Bacterial Artificial Chromosome (BAC) library and sequencing candidate genes important for the fur industry. BMC Genomics 12: 354.PubMedCrossRefGoogle Scholar
  2. Anistoroaei R, Farid A, Benkel B, Cirera S, and Christensen K (2006) Isolation and characterization of 79 microsatellite markers from the American mink (Mustela vison). Anim. Genet. 37:179–188.CrossRefGoogle Scholar
  3. Anistoroaei R and Christensen K (2007) Mapping of the silver gene in mink and its association with the dilution gene in dog. Cytogenet. Genome Res. 116:316–318.PubMedCrossRefGoogle Scholar
  4. Anistoroaei R, Menzorov A, Serov O, Farid A, and Christensen K (2007) The first linkage map of the American mink (Mustela vison). Anim. Genet. 38:384–388.PubMedCrossRefGoogle Scholar
  5. Anistoroaei R., Fredholm M, Christensen K, and Leeb T (2008) Albinism in the American mink (Neovison vison) is associated with a tyrosinase nonsense mutation. Anim Genet 39:645–648.PubMedCrossRefGoogle Scholar
  6. Anistoroaei R, Ansari S, Farid A, Benkel B, Karlskov Mortensen P, and Christensen K (2009) An expanded anchored linkage map and virtual mapping for the American mink (Neovison vison) genome based on homology to human and dog. Genomics 94:204–210.PubMedCrossRefGoogle Scholar
  7. Ansari S, Anistoroaei R, Farid A, Christensen K, and Benkel BF (2007) Characterization of microsatellite markers isolated from the American mink (Mustela vison) genome. Scientifur 31:55–58.Google Scholar
  8. Benkel BF, Rouvinen-Watt K, Farid A, abd Anistoroaei R (2009) Molecular characterization of the Himalayan mink. Mamm. Genome 20:256–259.PubMedCrossRefGoogle Scholar
  9. Brusgaard K, Shukri N, Malchenko S, Lohi O, Christensen K, and Kruse T (1998) Three polymorphic mink, Mustela vison, dinucleotide repeats. Anim. Genet. 29:153.PubMedGoogle Scholar
  10. Carpenter P, Dawson D, Greig C, Parham A, Cheeseman C, and Burke T (2003) Isolation of 39 polymorphic microsatellite loci and the development of a fluorescently labelled marker set for the Eurasian badger (Meles meles) (Carnivora: Mustelidae). Mol. Ecol. Notes 3:610–615.CrossRefGoogle Scholar
  11. Chen R, Sodergren E, Weinstock G, and Gibbs R (2004) Dynamic building of a BAC clone tiling path for the rat genome sequencing project. Genome Res. 14: 679–684.PubMedCrossRefGoogle Scholar
  12. Christensen K, Brusgaard K, Malchenko S, Lohi O, and Serov O (1996) Standardization of the American mink (Mustella vison) karyotype and some cosmid in situ hybridization results. Arch. Zootec. 45:259–265.CrossRefGoogle Scholar
  13. Chung H, Lee K, Choi B, Jang G, Ha J, and Kim T (2007) Identification of microsatellite markers between SW71 and SW1881 on porcine chromosome 6. Anim. Genet. 38:81.PubMedCrossRefGoogle Scholar
  14. Ewing B, Hillier L, Wendl MC, and Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175–185.Google Scholar
  15. Farid A, Vincent I, Benkel B, and Christensen K (2004) Isolation of microsatellite markers for American mink (Mustela vison). Scientifur 28:228–233.Google Scholar
  16. Frelichowski J, Palmer M, Main D, Tomkins J, Cantrell R, Stelly D, Yu J, Kohel R, and Ulloa M (2006) Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends. Mol. Gen. Genomics 275:479–491.CrossRefGoogle Scholar
  17. Fur Commission USA (2007) Press release — November 2007, available at: www.furcommission.com/farming/pelts.htm.
  18. Groenen M, Cheng H, Bumstead N, Benkel B, Briles W, Burke T, Burt D, Crittenden L, Dodgson J, Hillel J, et al. (2000) A consensus linkage map of the chicken genome. Genome Res. 10:137–147.PubMedGoogle Scholar
  19. Graphodatsky A, Yang F, Serdukova N, Perelman P, Zhdanova N, Ferguson-Smith M (2000) Dog chromosome-specific paints reveal evolutionary inter- and intrachromosomal rearrangements in the American mink and human. Cytogenet. Cell. Genet. 90:275–278.PubMedCrossRefGoogle Scholar
  20. Han Yand Korban S (2008) An overview of the apple genome through BAC end sequence analysis. Plant Mol. Biol. 67:581–588.CrossRefGoogle Scholar
  21. Hameister H, Klett C, Bruch J, Dixkens C, Vogel W, and Christensen K (1997) Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chromosome Res. 5:5–11.PubMedCrossRefGoogle Scholar
  22. Ihara N, Takasuga A, Mizoshita K, Takeda H, Sugimoto M, Mizoguchi Y, Hirano T, Itoh T, Watanabe T, Reed K, et al. (2004) A Comprehensive Genetic Map of the Cattle Genome Based on 3802 Microsatellites. Genome Res. 14:1987–1998.PubMedCrossRefGoogle Scholar
  23. Jeon JT, Park EW, Jeon HJ, Kim TH, Lee KT, and Cheong IC (2003) A large-insert porcine library with sevenfold genome coverage: a tool for positional cloning of candidate genes for major quantitative traits. Mol. Cells 16:113–116.PubMedGoogle Scholar
  24. Klukowska J, Szczerbal I, Wengi-Piasecka A, Switonski M, Schelling C, Gmür A, and Dolf G, (2004) Characterization and mapping of canine microsatellites isolated from BAC clones harbouring DNA sequences homologous to seven human genes. Anim. Genet. 35:404–407.PubMedCrossRefGoogle Scholar
  25. Kuznetsov S, Matveeva N, Murphy W, O’Brien S, and Serov O (2003) Mapping of 53 loci in American mink (Mustela vison). J. Hered. 94:386–391.PubMedCrossRefGoogle Scholar
  26. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al. (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921.PubMedCrossRefGoogle Scholar
  27. Lee M.-K, Ren C, Yan B, Cox B, Zhang H-B, Romanov M, Sizemore F, Suchyta S, E. Peters E, and Dodgson J (2003) Construction and characterization of three complementary BAC libraries for analysis of the chicken genome. Anim. Genet. 34:151–152.PubMedCrossRefGoogle Scholar
  28. Leeb T, Vogl C, Zhu B, de Jong PJ, Binns M, Chowdhary B, Scharfe M, Jarek M, Nordsiek G, Schrader F, and Blöcker H (2006) A human-horse comparative map based on equine BAC end sequences. Genomics 87:772–776.PubMedCrossRefGoogle Scholar
  29. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas 3rd EJ, Zody MC et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819.PubMedCrossRefGoogle Scholar
  30. Maddox J, Davies K, Crawford A, Hulme D, Vaiman D, Cribiu E, Freking B, Beh K, Cockett N, Kang N et al. (2001) An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res. 11:1275–1289.PubMedCrossRefGoogle Scholar
  31. Morgulis A, Gertz EM, Schäffer AA, and Agarwala R (2006) A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comp. Biol. 13:1028–1040.CrossRefGoogle Scholar
  32. Ness N, Einarson E, Lohi O, and Jorgensen G (1988) Beautiful Fur Animals and Their Coat Colour Genetics. Scientifur, Glostrup, Denmark.Google Scholar
  33. O’Connell M, Wright J, and Farid A (1996) Development of PCR primers for nine polymorphic American mink (Mustela vison) microsatellite loci. Mol. Ecol. 5:311–312.PubMedGoogle Scholar
  34. Pack S, Bedanov V, Sokolova O, Zhdanova N, Matveeva N, and Serov O (1992) Characterization of a new hybrid mink-mouse clone panel: Chromosomal and regional assignments of the GLO, ACE NP, CKBB, ADH2, and MEI loci in mink (Mustela vison). Mamm. Genome 3:112–118.PubMedCrossRefGoogle Scholar
  35. Ren C, Lee MK, Yan B, Ding K, Cox B, Romanov MN, Price JA, Dodgson JB, and Zhang HB (2003) A BAC-based physical map of the chicken genome. Genome Res. 13:2754–2758.PubMedCrossRefGoogle Scholar
  36. Rohrer G, Alexander L, Hu Z, Smith T, Keele J, and Beattie C (1996) A comprehensive map of the porcine genome. Genome Res. 6:371–391.PubMedCrossRefGoogle Scholar
  37. Rubtsov N, Radjabli S, Gradov A, and Serov O (1981) Chinese hamster ×American mink somatic cell hybrids: Characterization of a clone panel and assignment of the mink genes for malate dehydrogenase, NADP-1 and malate dehydrogenase, NAD-1. Theor. Appl. Genet. 60:99–106.CrossRefGoogle Scholar
  38. Shackelford R (1948) The nature of coat color differences in mink and foxes. Genetics 33:311–336Google Scholar
  39. Shackelford R, (1949) Six mutations affecting coat color in ranch bred mink. Am. Nat. 83:49–86.CrossRefGoogle Scholar
  40. Stein N, Feuillet C, Wicker T, Schlagenhauf E, and Keller B (2000) Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc. Natl. Acad. Sci. USA 97:13436–13441.PubMedCrossRefGoogle Scholar
  41. Trapezov O (1997) Black crystal: a novel color mutant in the American mink (Mustela vison Schreber). J. Hered. 88:164–166.PubMedGoogle Scholar
  42. Vaiman D, Billault A, Tabet-Aoul K, Schibler L, Vilette D, Oustry-Vaiman A, Soravito C, and Cribiu E (1999) Construction and characterization of a sheep BAC library of three genome equivalents. Mamm. Genome 10:585–587.PubMedCrossRefGoogle Scholar
  43. Vincent I, Farid A, and Otieno C (2003) Variability of thirteen microsatellite markers in American mink (Mustela vison). Can. J. Anim. Sci. 83:597–599.CrossRefGoogle Scholar
  44. Wei L, Ying Z, Zhaoliang L, Li G, Xiaobo W, Jing F, Jidong F, Rui Z, Xiaoxiang H, and Ning L (2006) A five-fold pig bacterial artificial chromosome library: a resource for positional cloning and physical mapping. Prog. Nat. Sci. 16:889–892.CrossRefGoogle Scholar
  45. Weikard R, Goldammer T, Eberlein A, and Kuehn C (2009) Novel tranascripts discovered by mining genomics DNA from defined regions of bovine chromosome 6. BMC Genomics 10:186.PubMedCrossRefGoogle Scholar
  46. Woo SS, Jiang J, Gill BS, Paterson AH, and Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res. 22:4922–4931.PubMedCrossRefGoogle Scholar
  47. Xia X, Xie Z, and Li W (2003) Effects of GC content and mutational pressure on the lengths of exons and coding sequences. J. Mol. Evol. 56:362–370.PubMedCrossRefGoogle Scholar
  48. Zhu B, Smith J, Tracey S, Konfortov B, Welzel K, Schalkwyk L, Lehrach H, Kollers S, Masabanda J, Buitkamp J et al. (1999) A 5× genome coverage bovine BAC library: production, characterization, and distribution. Mamm. Genome 10:706–709.PubMedCrossRefGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Bernhard F. Benkel
    • 1
  • Amanda Smith
    • 1
  • Knud Christensen
    • 2
  • Razvan Anistoroaei
    • 2
  • Ye Zhang
    • 3
  • Christoph W. Sensen
    • 3
  • Hossain Farid
    • 1
  • Lyn Paterson
    • 4
  • Ronald M. Teather
    • 4
  1. 1.Department of Plant and Animal SciencesNova Scotia Agricultural CollegeTruroCanada
  2. 2.Dept. of Animal and Veterinary Basic Sciences, Division of Animal Genetics and BioinformaticsUniversity of CopenhagenFrederiksberg CDenmark
  3. 3.Faculty of Medicine, Department of Biochemistry & Molecular BiologyUniversity of CalgaryCalgaryCanada
  4. 4.Lethbridge Research CentreAgriculture and Agri-Food CanadaLethbridgeCanada

Personalised recommendations