Genes & Genomics

, Volume 33, Issue 6, pp 591–603 | Cite as

Prediction of personalized drugs based on genetic variations provided by DNA sequencing technologies



Recent reports of death and illness caused by adverse drug reactions have boosted rational drug design research. It has been shown through sequencing of the entire human genome that human genetic variations play a key role in adverse reactions to drugs as well as in differences in the effectiveness of drug treatments. The advent of high-throughput DNA sequencing technologies with bioinformatics of system biology have allowed the easy identification of genetic variations and all other pharmacogenetic variants in a single assay, thus permitting truly personalized drug treatment. This would be particularly valuable for many patients with chronic diseases who must take many medications concurrently. In this review, we have focused on pharmacogenomics for the prediction of variable drug responses between individuals with relevant genetic variations through new DNA sequencing technologies and provided directions for personalized drug therapy in the future.


New DNA sequencing Genome analysis Single nucleotide polymorphisms (SNPs) Pharmacogenomics Personalized drugs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aithal GP, Day CP, Kesteven PJ, and Daly AK (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353: 717–719.PubMedCrossRefGoogle Scholar
  2. Ameyaw MM, Regateiro F, Li T, Liu X, Tariq M, Mobarek A, Thornton N, Folayan GO, Githang’a J, Indalo A, et al. (2001) MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 11: 217–221.PubMedCrossRefGoogle Scholar
  3. Andersson U, Schwartzbaum J, Wiklund F, Sjostrom S, Liu Y, Tsavachidis S, Ahlbom A, Auvinen A, Collatz-Laier H, Feychting M, et al. (2010). A comprehensive study of the association between the EGFR and ERBB2 genes and glioma risk. Acta Oncol. 49: 767–775.PubMedCrossRefGoogle Scholar
  4. Bennett ST, Barnes C, Cox A, Davies L, and Brown C (2005) Toward the 1,000 dollars human genome. Pharmacogenomics 6: 373–382.PubMedCrossRefGoogle Scholar
  5. Bentley DR (2006). Whole-genome re-sequencing. Curr. Opin. Genet. Dev. 16; 545–552.PubMedCrossRefGoogle Scholar
  6. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: 53–59.PubMedCrossRefGoogle Scholar
  7. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, et al. (2008) The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26: 1146–1153.PubMedCrossRefGoogle Scholar
  8. Braslavsky I, Hebert B, Kartalov E, and Quake SR (2003) Sequence information can be obtained from single DNA molecules. Proc. Natl. Acad. Sci. USA 100: 3960–3964.PubMedCrossRefGoogle Scholar
  9. Buch S, Schafmayer C, Volzke H, Becker C, Franke A, von Eller-Eberstein H, Kluck C, Bassmann I, Brosch M, Lammert F, et al. (2007) A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat. Genet. 39: 995–999.PubMedCrossRefGoogle Scholar
  10. Budnitz DS, Shehab N, Kegler SR, and Richards CL (2007) Medication use leading to emergency department visits for adverse drug events in older adults. Ann. Intern. Med. 147: 755–765.PubMedGoogle Scholar
  11. Chen X, Wang L, Zhi L, Zhou G, Wang H, Zhang X, Hao B, Zhu Y, Cheng Z, and He F (2005) The G-113A polymorphism in CYP1A2 affects the caffeine metabolic ratio in a Chinese population. Clin. Pharmacol. Ther. 78: 249–259.PubMedCrossRefGoogle Scholar
  12. Choo EF, Leake B, Wandel C, Imamura H, Wood AJ, Wilkinson GR, and Kim RB (2000) Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug. Metab. Dispos. 28: 655–660.PubMedGoogle Scholar
  13. Chou KC and Shen HB (2007a) MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem. Biophys. Res. Commun. 360: 339–345.PubMedCrossRefGoogle Scholar
  14. Chou KC and Shen HB (2007b) Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem. Biophys. Res. Commun. 357: 633–640.PubMedCrossRefGoogle Scholar
  15. Chou KC and Shen HB (2008a) Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc. 3: 153–162.PubMedCrossRefGoogle Scholar
  16. Chou KC and Shen HB (2008b) ProtIdent: a web server for identifying proteases and their types by fusing functional domain and sequential evolution information. Biochem. Biophys. Res. Commun. 376: 321–325.PubMedCrossRefGoogle Scholar
  17. Clark LN, Kisselev S, Park N, Ross B, Verbitsky M, Rios E, Alcalay RN, Lee JH, and Louis ED (2010) Mutations in the Parkinson’s disease genes, Leucine Rich Repeat Kinase 2 (LRRK2) and Glucocerebrosidase (GBA), are not associated with essential tremor. Parkinsonism Relat. Disord. 16: 132–135.PubMedCrossRefGoogle Scholar
  18. Collins FS, Green ED, Guttmacher AE, and Guyer MS (2003a) A vision for the future of genomics research. Nature 422: 835–847.PubMedCrossRefGoogle Scholar
  19. Collins FS, Morgan M, and Patrinos A (2003b) The Human Genome Project: lessons from large-scale biology. Science 300: 286–290.PubMedCrossRefGoogle Scholar
  20. Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, Rosenberg NA, and Pritchard JK (2006) A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat. Genet. 38: 1251–1260.PubMedCrossRefGoogle Scholar
  21. Conti E and Izaurralde E (2005) Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 17: 316–325.PubMedCrossRefGoogle Scholar
  22. Cornelis MC, El-Sohemy A, Kabagambe EK, and Campos H (2006) Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 295: 1135–1141.PubMedCrossRefGoogle Scholar
  23. Court MH (2007) A pharmacogenomics primer. J. Clin. Pharmacol. 47: 1087–1103.PubMedCrossRefGoogle Scholar
  24. Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, Scollen S, Baynes C, Ponder BA, Chanock S, et al. (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat. Genet. 39: 352–358.PubMedCrossRefGoogle Scholar
  25. Dekker C (2007) Solid-state nanopores. Nat. Nanotechnol. 2: 209–215.PubMedCrossRefGoogle Scholar
  26. Drmanac S, Kita D, Labat I, Hauser B, Schmidt C, Burczak JD, and Drmanac R (1998) Accurate sequencing by hybridization for DNA diagnostics and individual genomics. Nat. Biotechnol. 16: 54–58.PubMedCrossRefGoogle Scholar
  27. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, et al. (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355: 2408–2417.PubMedCrossRefGoogle Scholar
  28. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, et al. (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314: 1461–1463.PubMedCrossRefGoogle Scholar
  29. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R, et al. (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447: 1087–1093.PubMedCrossRefGoogle Scholar
  30. Edwards JR, Itagaki Y, and Ju J (2001) DNA sequencing using biotinylated dideoxynucleotides and mass spectrometry. Nucleic Acids Res. 29: E104–104.PubMedCrossRefGoogle Scholar
  31. Edwards JR, Ruparel H, and Ju J (2005) Mass-spectrometry DNA sequencing. Mutat. Res. 573: 3–12.PubMedCrossRefGoogle Scholar
  32. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, et al. (2009) Real-time DNA sequencing from single polymerase molecules. Science 323: 133–138.PubMedCrossRefGoogle Scholar
  33. Fedurco M, Romieu A, Williams S, Lawrence I, and Turcatti G (2006) BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res. 34: e22.PubMedCrossRefGoogle Scholar
  34. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M, Zhang K, Gumbs C, Castagna A, Cossarizza A, et al. (2007) A whole-genome association study of major determinants for host control of HIV-1. Science 317: 944–947.PubMedCrossRefGoogle Scholar
  35. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316: 889–894.PubMedCrossRefGoogle Scholar
  36. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–861.PubMedCrossRefGoogle Scholar
  37. Fretland AJ, Leff MA, Doll MA, and Hein DW (2001) Functional characterization of human N-acetyltransferase 2 (NAT2) single nucleotide polymorphisms. Pharmacogenetics 11: 207–215.PubMedCrossRefGoogle Scholar
  38. Fu DJ, Tang K, Braun A, Reuter D, Darnhofer-Demar B, Little DP, O’Donnell MJ, Cantor CR, and Koster H (1998) Sequencing exons 5 to 8 of the p53 gene by MALDI-TOF mass spectrometry. Nat. Biotechnol. 16: 381–384.PubMedCrossRefGoogle Scholar
  39. Gardy JL, Spencer C, Wang K, Ester M, Tusnady GE, Simon I, Hua S, deFays K, Lambert C, Nakai K, et al. (2003) PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res. 31: 3613–3617.PubMedCrossRefGoogle Scholar
  40. Gerloff T (2004) Impact of genetic polymorphisms in transmembrane carrier-systems on drug and xenobiotic distribution. Naunyn Schmiedebergs. Arch. Pharmacol. 369: 69–77.CrossRefGoogle Scholar
  41. Ginsburg GS and Willard HF (2009) Genomic and personalized medicine: foundations and applications. Transl. Res. 154: 277–287.PubMedCrossRefGoogle Scholar
  42. Glurich I, Burmester JK, and Caldwell MD (2010) Understanding the pharmacogenetic approach to warfarin dosing. Heart Fail. Rev. 15: 239–248.PubMedCrossRefGoogle Scholar
  43. Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, Manolescu A, Rafnar T, Gudbjartsson D, Agnarsson BA, Baker A, et al. (2007) Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat. Genet. 39: 977–983.PubMedCrossRefGoogle Scholar
  44. Guillem VM, Cervantes F, Martinez J, Alvarez-Larran A, Collado M, Camos M, Sureda A, Maffioli M, Marugan I, and Hernandez-Boluda JC (2010) XPC genetic polymorphisms correlate with the response to imatinib treatment in patients with chronic phase chronic myeloid leukemia. Am. J. Hematol. 85: 482–486.PubMedCrossRefGoogle Scholar
  45. Gunderson KL, Kuhn KM, Steemers FJ, Ng P, Murray SS, and Shen R (2006) Whole-genome genotyping of haplotype tag single nucleotide polymorphisms. Pharmacogenomics 7: 641–648.PubMedCrossRefGoogle Scholar
  46. Guo J, Yu L, Turro NJ, and Ju J (2010) An integrated system for DNA sequencing by synthesis using novel nucleotide analogues. Acc. Chem. Res. 43: 551–563.PubMedCrossRefGoogle Scholar
  47. Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, Glessner JT, Grabs R, Casalunovo T, Taback SP, Frackelton EC, et al. (2007) A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448: 591–594.PubMedCrossRefGoogle Scholar
  48. Halling J, Weihe P, and Brosen K (2008) The CYP2D6 polymorphism in relation to the metabolism of amitriptyline and nortriptyline in the Faroese population. Br. J. Clin. Pharmacol. 65: 134–138.PubMedCrossRefGoogle Scholar
  49. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch JW, et al. (2008) Single-molecule DNA sequencing of a viral genome. Science 320: 106–109.PubMedCrossRefGoogle Scholar
  50. Hay DC, Zhao D, Fletcher J, Hewitt ZA, McLean D, Urruticoechea-Uriguen A, Black JR, Elcombe C, Ross JA, Wolf R, et al. (2008) Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 26: 894–902.PubMedCrossRefGoogle Scholar
  51. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Sigurdsson A, Baker A, Palsson A, Masson G, et al. (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316: 1491–1493.PubMedCrossRefGoogle Scholar
  52. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, et al. (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. U. S. A. 97: 3473–3478.PubMedCrossRefGoogle Scholar
  53. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, et al. (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39: 870–874.PubMedCrossRefGoogle Scholar
  54. Iqbal SM, Akin D, and Bashir R (2007) Solid-state nanopore channels with DNA selectivity. Nat. Nanotechnol. 2: 243–248.PubMedCrossRefGoogle Scholar
  55. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjoqvist F, and Ingelman-Sundberg M (1993) Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Natl. Acad. Sci. USA 90: 11825–11829.PubMedCrossRefGoogle Scholar
  56. Jurica MS and Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12: 5–14.PubMedCrossRefGoogle Scholar
  57. Jones M (2009) Francis Collins Addresses State of Personalized Medicine. GenomeWeb [online],
  58. Kalow W, Tang BK, and Endrenyi L (1998) Hypothesis: comparisons of inter- and intra-individual variations can substitute for twin studies in drug research. Pharmacogenetics 8: 283–289.PubMedCrossRefGoogle Scholar
  59. Kasianowicz JJ, Brandin E, Branton D, and Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93: 13770–13773.PubMedCrossRefGoogle Scholar
  60. Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, Teague B, Alkan C, Antonacci F, et al. (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453: 56–64.PubMedCrossRefGoogle Scholar
  61. Kim VN and Nam JW (2006) Genomics of microRNA. Trends Genet. 22: 165–173.PubMedCrossRefGoogle Scholar
  62. Kiyohara C, Washio M, Horiuchi T, Tada Y, Asami T, Ide S, Takahashi H, and Kobashi G (2009) Cigarette smoking, N-acetyltransferase 2 polymorphisms and systemic lupus erythematosus in a Japanese population. Lupus 18: 630–638.PubMedCrossRefGoogle Scholar
  63. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308: 385–389.PubMedCrossRefGoogle Scholar
  64. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, et al. (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318: 420–426.PubMedCrossRefGoogle Scholar
  65. Kruglyak L and Nickerson DA (2001) Variation is the spice of life. Nat. Genet. 27: 234–236.PubMedCrossRefGoogle Scholar
  66. Laustriat D, Gide J, and Peschanski M (2010) Human pluripotent stem cells in drug discovery and predictive toxicology. Biochem. Soc. Trans. 38: 1051–1057.PubMedCrossRefGoogle Scholar
  67. Lennard MS, Silas JH, Freestone S, Ramsay LE, Tucker GT, and Woods HF (1982) Oxidation phenotype—a major determinant of metoprolol metabolism and response. N. Engl. J. Med. 307: 1558–1560.PubMedCrossRefGoogle Scholar
  68. Lesko LJ (2008) The critical path of warfarin dosing: finding an optimal dosing strategy using pharmacogenetics. Clin. Pharmacol. Ther. 84: 301–303.PubMedCrossRefGoogle Scholar
  69. Levy SF and Siegal ML (2008) Network hubs buffer environmental variation in Saccharomyces cerevisiae. PLoS Biol. 6: e264.PubMedCrossRefGoogle Scholar
  70. Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D, Vermeire S, Dewit O, de Vos M, Dixon A, et al. (2007) Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet. 3: e58.PubMedCrossRefGoogle Scholar
  71. Lindpaintner K (2003) Pharmacogenetics and pharmacogenomics in drug discovery and development: an overview. Clin. Chem. Lab. Med. 41: 398–410.PubMedCrossRefGoogle Scholar
  72. Lowe CE, Cooper JD, Brusko T, Walker NM, Smyth DJ, Bailey R, Bourget K, Plagnol V, Field S, Atkinson M, et al. (2007) Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat. Genet. 39: 1074–1082.PubMedCrossRefGoogle Scholar
  73. Lundquist PM, Zhong CF, Zhao P, Tomaney AB, Peluso PS, Dixon J, Bettman B, Lacroix Y, Kwo DP, McCullough E, et al. (2008) Parallel confocal detection of single molecules in real time. Opt. Lett. 33: 1026–1028.PubMedCrossRefGoogle Scholar
  74. Mango R, Vecchione L, Raso B, Borgiani P, Brunetti E, Mehta JL, Lauro R, Romeo F, and Novelli G (2005) Pharmacogenomics in cardiovascular disease: the role of single nucleotide polymorphisms in improving drug therapy. Expert Opin. Pharmacother. 6: 2565–2576.PubMedCrossRefGoogle Scholar
  75. Maraganore DM, de Andrade M, Lesnick TG, Strain KJ, Farrer MJ, Rocca WA, Pant PV, Frazer KA, Cox DR, and Ballinger DG (2005) High-resolution whole-genome association study of Parkinson disease. Am. J. Hum. Genet. 77: 685–693.PubMedCrossRefGoogle Scholar
  76. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet. 24: 133–141.PubMedCrossRefGoogle Scholar
  77. Maxam AM and Gilbert W (1977). A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74: 560–564.PubMedCrossRefGoogle Scholar
  78. McNeish J (2004) Embryonic stem cells in drug discovery. Nat. Rev. Drug Discov. 3: 70–80.PubMedCrossRefGoogle Scholar
  79. McNeish JD (2007) Stem cells as screening tools in drug discovery. Curr. Opin. Pharmacol. 7: 515–520.PubMedCrossRefGoogle Scholar
  80. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, et al. (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316: 1488–1491.PubMedCrossRefGoogle Scholar
  81. McVean G, Spencer CC, and Chaix R (2005). Perspectives on human genetic variation from the HapMap Project. PLoS Genet. 1; e54.Google Scholar
  82. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, Walker JR, Antman EM, Macias W, Braunwald E, et al. (2009) Cytochrome p-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 360: 354–362.PubMedCrossRefGoogle Scholar
  83. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, Depner M, von Berg A, Bufe A, Rietschel E, et al. (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448: 470–473.PubMedCrossRefGoogle Scholar
  84. Molanaei H, Carrero JJ, Heimburger O, Nordfors L, Lindholm B, Stenvinkel P, Odar-Cederlof I, and Bertilsson L (2010) Influence of the CYP2D6 polymorphism and hemodialysis on codeine disposition in patients with end-stage renal disease. Eur. J. Clin. Pharmacol. 66: 269–273.PubMedCrossRefGoogle Scholar
  85. Myers RH (2006) Considerations for genomewide association studies in Parkinson disease. Am. J. Hum. Genet. 78: 1081–1082.PubMedCrossRefGoogle Scholar
  86. Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, and Kamataki T (1999) Genetic polymorphism in the 5′-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J. Biochem. 125: 803–808.PubMedGoogle Scholar
  87. Nebert DW and Vesell ES (2004). Advances in pharmacogenomics and individualized drug therapy: exciting challenges that lie ahead. Eur. J. Pharmacol. 500: 267–280.PubMedCrossRefGoogle Scholar
  88. Need AC and Goldstein DB (2006) Genome-wide tagging for everyone. Nat. Genet. 38: 1227–1228.PubMedCrossRefGoogle Scholar
  89. Ni LN, Li JY, Miao KR, Qiao C, Zhang SJ, Qiu HR, and Qian SX (2011) Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia. Med. Oncol. 28: 265–269.PubMedCrossRefGoogle Scholar
  90. O’Reilly RA, Aggeler PM, Hoag MS, Leong LS, and Kropatkin ML (1964) Hereditary Transmission of Exceptional Resistance to Coumarin Anticoagulant Drugs. The First Reported Kindred. N. Engl. J. Med. 271: 809–815.PubMedCrossRefGoogle Scholar
  91. Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Hori M, Nakamura Y, and Tanaka T (2002) Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 32: 650–654.PubMedCrossRefGoogle Scholar
  92. Pearson TA and Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299: 1335–1344.PubMedCrossRefGoogle Scholar
  93. Pereira NL, and Weinshilboum RM (2009) Cardiovascular pharmacogenomics and individualized drug therapy. Nat. Rev. Cardiol. 6: 632–638.PubMedCrossRefGoogle Scholar
  94. Perry HM, Jr, Tan EM, Carmody S, and Sakamoto A (1970) Relationship of acetyl transferase activity to antinuclear antibodies and toxic symptoms in hypertensive patients treated with hydralazine. J. Lab. Clin. Med. 76: 114–125.PubMedGoogle Scholar
  95. Reidenberg MM, Drayer DE, Levy M, and Warner H (1975) Polymorphic acetylation procainamide in man. Clin. Pharmacol. Ther. 17: 722–730.PubMedGoogle Scholar
  96. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, Blough DK, Thummel KE, Veenstra DL, and Rettie AE (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 352: 2285–2293.PubMedCrossRefGoogle Scholar
  97. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, et al. (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39: 596–604.PubMedCrossRefGoogle Scholar
  98. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, and Nyren P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 242: 84–89.PubMedCrossRefGoogle Scholar
  99. Roskey MT, Juhasz P, Smirnov IP, Takach EJ, Martin SA, and Haff LA (1996) DNA sequencing by delayed extraction-matrix-assisted laser desorption/ionization time of flight mass spectrometry. Proc. Natl. Acad. Sci. USA 93: 4724–4729.PubMedCrossRefGoogle Scholar
  100. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, et al. (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427; 537–541.PubMedCrossRefGoogle Scholar
  101. Ruan Y and Wei CL (2010). Multiplex parallel pair-end-ditag sequencing approaches in system biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 2: 224–234.PubMedGoogle Scholar
  102. Sanger F, Nicklen S, and Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.PubMedCrossRefGoogle Scholar
  103. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orru M, Usala G, et al. (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3: e115.PubMedCrossRefGoogle Scholar
  104. Service RF (2006) Gene sequencing. The race for the $1000 genome. Science 311: 1544–1546.PubMedCrossRefGoogle Scholar
  105. Shen HB and Chou KC (2007a) EzyPred: a top-down approach for predicting enzyme functional classes and subclasses. Biochem. Biophys. Res. Commun. 364: 53–59.PubMedCrossRefGoogle Scholar
  106. Shen HB and Chou KC (2007b) Signal-3L: A 3-layer approach for predicting signal peptides. Biochem. Biophys. Res. Commun. 363: 297–303.PubMedCrossRefGoogle Scholar
  107. Shen HB and Chou KC (2008) HIVcleave: a web-server for predicting human immunodeficiency virus protease cleavage sites in proteins. Anal. Biochem. 375: 388–390.PubMedCrossRefGoogle Scholar
  108. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, and Church GM (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309: 1728–1732.PubMedCrossRefGoogle Scholar
  109. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, et al. (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881–885.PubMedCrossRefGoogle Scholar
  110. Stout SM, Nielsen J, Welage LS, Shea M, Brook R, Kerber K, and Bleske BE (2011) Influence of Metoprolol Dosage Release Formulation on the Pharmacokinetic Drug Interaction With Paroxetine. J. Clin. Pharmacol. 51: 389–396.PubMedCrossRefGoogle Scholar
  111. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, and Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872.PubMedCrossRefGoogle Scholar
  112. Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.PubMedCrossRefGoogle Scholar
  113. Tazi J, Durand S, and Jeanteur P (2005) The spliceosome: a novel multi-faceted target for therapy. Trends Biochem. Sci. 30: 469–478.PubMedCrossRefGoogle Scholar
  114. ten Bosch JR and Grody WW (2008) Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J. Mol. Diagn. 10: 484–492.PubMedCrossRefGoogle Scholar
  115. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, and Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84: 7735–7738.PubMedCrossRefGoogle Scholar
  116. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, and Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147.PubMedCrossRefGoogle Scholar
  117. Tucker T, Marra M, and Friedman JM (2009) Massively parallel sequencing: the next big thing in genetic medicine. Am. J. Hum. Genet. 85: 142–154.PubMedCrossRefGoogle Scholar
  118. van Heel DA, Franke L, Hunt KA, Gwilliam R, Zhernakova A, Inouye M, Wapenaar MC, Barnardo MC, Bethel G, Holmes GK, et al. (2007) A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat. Genet. 39: 827–829.PubMedCrossRefGoogle Scholar
  119. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, Fan W, Zhang J, Li J, Guo Y, et al. (2008) The diploid genome sequence of an Asian individual. Nature 456: 60–65.PubMedCrossRefGoogle Scholar
  120. Wang L and Weinshilboum RM (2008) Pharmacogenomics: candidate gene identification, functional validation and mechanisms. Hum. Mol. Genet. 17: R174–179.PubMedCrossRefGoogle Scholar
  121. Weber WW and Hein DW (1985) N-acetylation pharmacogenetics. Pharmacol. Rev. 37: 25–79.PubMedGoogle Scholar
  122. Weinstein JN (2006) Spotlight on molecular profiling: “Integromic” analysis of the NCI-60 cancer cell lines. Mol. Cancer Ther. 5: 2601–2605.PubMedCrossRefGoogle Scholar
  123. Wolinsky H (2007) The thousand-dollar genome. Genetic brinkmanship or personalized medicine? EMBO Rep. 8: 900–903.PubMedCrossRefGoogle Scholar
  124. Xu M, Fujita D, and Hanagata N (2009) Perspectives and challenges of emerging single-molecule DNA sequencing technologies. Small 5: 2638–2649.PubMedCrossRefGoogle Scholar
  125. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, Hirota Y, Mori H, Jonsson A, Sato Y, et al. (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 40: 1092–1097.PubMedCrossRefGoogle Scholar
  126. Zanger UM, Raimundo S, and Eichelbaum M (2004) Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch. Pharmacol. 369: 23–37.PubMedCrossRefGoogle Scholar
  127. Zwolak M, Lagerqvist J, and Di Ventra M (2009) Quantized ionic conductance in nanopores. Phys. Rev. Lett. 103: 128102.PubMedCrossRefGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Graduate School of Life Science and BiotechnologyKorea UniversitySeoulKorea
  2. 2.Department of Biomedical Science, College of Health ScienceKorea UniversitySeoulKorea

Personalised recommendations