Genes & Genomics

, Volume 32, Issue 1, pp 63–70 | Cite as

Aged wild-type littermates and APPswe+PS1/ΔE9 mice present similar deficits in associative learning and spatial memory independent of amyloid load

  • Soo-Won Park
  • Hyoung-Gon Ko
  • Nuribalhae Lee
  • Hye-Ryeon Lee
  • Young-Soo Rim
  • Hyoung Kim
  • Kyung-Min Lee
  • Bong-Kiun Kaang
Research Article

Abstract

APPswe+PS1/ΔE9 transgenic (Tg) mice with Aβ plaque formation in neocortex and hippocampus were evaluated in tests measuring exploratory activity, anxiety, and memory ability using open field test (OFT), Y-maze, contextual fear conditioning (CFC), and Morris water maze (MWM). Wild type (WT) and Tg mice over eight months old showed same locomotion activity and anxiety level in novel stimulation, open field, and Y-maze contexts. In other experiments that measured associative memory and spatial memory in Tg mice and their littermates, the subjects also presented similar deficiencies in memory acquisition. These two aged groups showed abnormal freezing level variance especially in CFC test. In comparison to that in non-transgenic 8-week-old mice group, the acquisition of spatial memory in MWM task was impaired in aged WT and bigenic Tg mice. Taken together, aged wild-type littermates and Tg mice present similar deficits in associative learning and spatial memory independent of amyloid plaques.

Keywords

APPswe+PS1/ΔE9 transgenic mice Alzheimer’s disease Aβ plaque Learning Spatial memory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arendash GW, King DL, Gordon MN, Morgan D, Hatcher JM, Hope CE and Diamond DM (2001) Progressive, age-related behavioral impairments in transgenic mice carrying both mutant amyloid precursor protein and presenilin-1 transgenes. Brain Res. 891: 42–53.CrossRefPubMedGoogle Scholar
  2. Belzung C and Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 125: 141–149.CrossRefPubMedGoogle Scholar
  3. Bertholet JY and Crusio WE (1991) Spatial and non-spatial spontaneous alternation and hippocampal mossy fibre distribution in nine inbred mouse strains. Behav. Brain Res. 43: 197–202.CrossRefPubMedGoogle Scholar
  4. Brandeis R, Brandys Y and Yehuda S (1989) The use of the Morris Water Maze in the study of memory and learning. Int. J. Neurosci. 48: 29–69.CrossRefPubMedGoogle Scholar
  5. Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44: 195–208.CrossRefPubMedGoogle Scholar
  6. Buttini M, Yu GQ, Shockley K, Huang Y, Jones B, Masliah E, Mallory M, Yeo T, Longo FM and Mucke L (2002) Modulation of Alzheimer-like synaptic and cholinergic deficits in transgenic mice by human apolipoprotein E depends on isoform, aging, and overexpression of amyloid beta peptides but not on plaque formation. J. Neurosci. 22: 10539–10548.PubMedGoogle Scholar
  7. Chang EH, Savage MJ, Flood DG, Thomas JM, Levy RB, Mahadomrongkul V, Shirao T, Aoki C and Huerta PT (2006) AMPA receptor downscaling at the onset of Alzheimer’ disease pathology in double knockin mice. Proc. Natl. Acad. Sci. USA 103: 3410–3415.CrossRefPubMedGoogle Scholar
  8. Dickey CA, Loring JF, Montgomery J, Gordon MN, Eastman PS and Morgan D (2003) Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J. Neurosci. 23: 5219–5226.PubMedGoogle Scholar
  9. Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, Hutton M, Buee L, Harigaya Y, Yager D, et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383: 710–713.CrossRefPubMedGoogle Scholar
  10. Gilpin H, Whitcomb D and Cho K (2008) Atypical evening cortisol profile induces visual recognition memory deficit in healthy human subjects. Mol. Brain 1: 4.CrossRefPubMedGoogle Scholar
  11. Grauer E and Kapon Y (1993) Wistar-Kyoto rats in the Morris water maze: impaired working memory and hyper-reactivity to stress. Behav. Brain Res. 59: 147–151.CrossRefPubMedGoogle Scholar
  12. Gruart A, Lopez-Ramos JC, Munoz MD and Delgado-Garcia JM (2008) Aged wild-type and APP, PS1, and APP + PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load. Neurobiol. Dis. 30: 439–450.CrossRefPubMedGoogle Scholar
  13. Haxby JV, Raffaele K, Gillette J, Schapiro MB and Rapoport SI (1992) Individual trajectories of cognitive decline in patients with dementia of the Alzheimer type. J. Clin. Exp. Neuropsychol. 14: 575–592.CrossRefPubMedGoogle Scholar
  14. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, et al. (1998) Accelerated Alzheimer-type phenotype in transgenic micecarrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4: 97–100.CrossRefPubMedGoogle Scholar
  15. Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff K and Morgan D (1999) Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behav. Genet. 29: 177–185.CrossRefPubMedGoogle Scholar
  16. Hollingworth P, Hamshere ML, Moskvina V, Dowzell K, Moore PJ, Foy C, Archer N, Lynch A, Lovestone S, Brayne C, et al. (2006) Four components describe behavioral symptoms in 1,120 individuals with late-onset Alzheimer’ disease. J. Am. Geriatr. Soc. 54: 1348–1354.CrossRefPubMedGoogle Scholar
  17. Holscher C (1999) Stress impairs performance in spatial water maze learning tasks. Behav. Brain Res. 100: 225–235.CrossRefPubMedGoogle Scholar
  18. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F and Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274: 99–102.CrossRefPubMedGoogle Scholar
  19. Jacobsen JS, Wu CC, Redwine JM, Comery TA, Arias R, Bowlby M, Martone R, Morrison JH, Pangalos MN, Reinhart PH, et al. (2006) Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’ disease. Proc. Natl. Acad. Sci. USA 103: 5161–5166.CrossRefPubMedGoogle Scholar
  20. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL, et al. (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13: 159–170.CrossRefPubMedGoogle Scholar
  21. Jankowsky JL, Melnikova T, Fadale DJ, Xu GM, Slunt HH, Gonzales V, Younkin LH, Younkin SG, Borchelt DR and Savonenko AV (2005) Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’ disease. J. Neurosci. 25: 5217–5224.CrossRefPubMedGoogle Scholar
  22. Kelly PH, Bondolfi L, Hunziker D, Schlecht HP, Carver K, Maguire E, Abramowski D, Wiederhold KH, Sturchler-Pierrat C, Jucker M, et al. (2003) Progressive age-related impairment of cognitive behavior in APP23 transgenic mice. Neurobiol. Aging 24: 365–378.CrossRefPubMedGoogle Scholar
  23. Kim J, Lee S, Park K, Hong I, Song B, Son G, Park H, Kim WR, Park E, Choe HK, et al. (2007) Amygdala depotentiation and fear extinction. Proc. Natl. Acad. Sci. USA 104: 20955–20960.CrossRefPubMedGoogle Scholar
  24. Kim JJ and Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256: 675–677.CrossRefPubMedGoogle Scholar
  25. King DL and Arendash GW (2002) Behavioral characterization of the Tg2576 transgenic model of Alzheimer’ disease through 19 months. Physiol. Behav. 75: 627–642.CrossRefPubMedGoogle Scholar
  26. Lalonde R, Kim HD and Fukuchi K (2004) Exploratory activity, anxiety, and motor coordination in bigenic APPswe+PS1/DeltaE9 mice. Neurosci. Lett. 369: 156–161.CrossRefPubMedGoogle Scholar
  27. Lalonde R, Lewis TL, Strazielle C, Kim H and Fukuchi K (2003) Transgenic mice expressing the betaAPP695SWE mutation: effects on exploratory activity, anxiety, and motor coordination. Brain Res. 977: 38–45.CrossRefPubMedGoogle Scholar
  28. Lee Y, Chang DJ, Lee YS, Chang KA, Kim H, Yoon JS, Lee S, Suh YH and Kaang BK (2003) Beta-amyloid peptide binding protein does not couple to G protein in a heterologous Xenopus expression system. J. Neurosci. Res. 73: 255–259.CrossRefPubMedGoogle Scholar
  29. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K and et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer’ disease locus. Science 269: 973–977.CrossRefPubMedGoogle Scholar
  30. Liu L, Orozco IJ, Planel E, Wen Y, Bretteville A, Krishnamurthy P, Wang L, Herman M, Figueroa H, Yu WH, et al. (2008) A transgenic rat that develops Alzheimer’ disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiol. Dis. 31: 46–57.CrossRefPubMedGoogle Scholar
  31. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11: 47–60.CrossRefPubMedGoogle Scholar
  32. Nilsson LN, Bales KR, DiCarlo G, Gordon MN, Morgan D, Paul SM and Potter H (2001) Alpha-1-antichymotrypsin promotes beta-sheet amyloid plaque deposition in a transgenic mouse model of Alzheimer’ disease. J. Neurosci. 21: 1444–1451.PubMedGoogle Scholar
  33. Prut L and Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 463: 3–33.CrossRefPubMedGoogle Scholar
  34. Rapp PR and Amaral DG (1992) Individual differences in the cognitive and neurobiological consequences of normal aging. Trends Neurosci 15: 340–345.CrossRefPubMedGoogle Scholar
  35. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ and Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’ disease mouse model. Science 316: 750–754.CrossRefPubMedGoogle Scholar
  36. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, et al. (1995) Familial Alzheimer’ disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’ disease type 3 gene. Nature 376: 775–778.CrossRefPubMedGoogle Scholar
  37. Sarter M, Bodewitz G and Stephens DN (1988) Attenuation of scopolamine-induced impairment of spontaneous alteration behaviour by antagonist but not inverse agonist and agonist beta-carbolines. Psychopharmacology (Berl) 94: 491–495.CrossRefGoogle Scholar
  38. Saura CA, Chen G, Malkani S, Choi SY, Takahashi RH, Zhang D, Gouras GK, Kirkwood A, Morris RG and Shen J (2005) Conditional inactivation of presenilin 1 prevents amyloid accumulation and temporarily rescues contextual and spatial working memory impairments in amyloid precursor protein transgenic mice. J. Neurosci. 25: 6755–6764.CrossRefPubMedGoogle Scholar
  39. Savonenko AV, Xu GM, Price DL, Borchelt DR and Markowska AL (2003) Normal cognitive behavior in two distinct congenic lines of transgenic mice hyperexpressing mutant APP SWE. Neurobiol. Dis. 12: 194–211.CrossRefPubMedGoogle Scholar
  40. Terry RD and Katzman R (1983) Senile dementia of the Alzheimer type. Ann. Neurol. 14: 497–506.CrossRefPubMedGoogle Scholar
  41. Wang SH, Teixeira CM, Wheeler AL and Frankland PW (2009) The precision of remote context memories does not require the hippocampus. Nat. Neurosci. 12: 253–255.CrossRefPubMedGoogle Scholar
  42. Wenk GL (2004) Assessment of spatial memory using the radial arm maze and Morris water maze. Curr. Protoc. Neurosci. Chapter 8: Unit 8 5A.Google Scholar
  43. Whitehouse PJ, Price DL, Clark AW, Coyle JT and DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol. 10: 122–126.CrossRefPubMedGoogle Scholar
  44. Wong TP, Debeir T, Duff K and Cuello AC (1999) Reorganization of cholinergic terminals in the cerebral cortex and hippocampus in transgenic mice carrying mutated presenilin-1 and amyloid precursor protein transgenes. J. Neurosci. 19: 2706–2716.PubMedGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Soo-Won Park
    • 1
  • Hyoung-Gon Ko
    • 1
  • Nuribalhae Lee
    • 1
  • Hye-Ryeon Lee
    • 1
  • Young-Soo Rim
    • 1
  • Hyoung Kim
    • 1
  • Kyung-Min Lee
    • 2
  • Bong-Kiun Kaang
    • 1
    • 3
  1. 1.National Creative Research Initiative Center for Memory, Departments of Biological Sciences, College of Natural SciencesSeoul National UniversitySeoulKorea
  2. 2.Department of Anatomy, School of MedicineKyungpook National UniversityDaeguKorea
  3. 3.Departments of Brain and Cognitive Sciences, College of Natural SciencesSeoul National UniversitySeoulKorea

Personalised recommendations