Longitudinal Concordance Correlation Function Based on Variance Components: An Application in Fruit Color Analysis

Abstract

The maturity stages of papaya fruit based on peel color are frequently characterized from a sample of four points on the equatorial region measured by a colorimeter. However, this procedure may not be suitable for assessing the papaya’s overall mean color and an alternative proposal is to use image acquisition of the whole fruit’s peel. Questions of interest are whether a sample on the equatorial region can reproduce a sample over the whole peel region and if the colorimeter can compete with a scanner, or digital camera, in measuring the mean hue over time. The reproducibility can be verified by using the concordance correlation for responses measured on a continuous scale. Thus, in this work we propose a longitudinal concordance correlation (LCC), based on a mixed-effects regression model, to estimate agreement over time among pairs of observations obtained from different combinations between measurement method and sampled peel region. The results show that the papaya’s equatorial region is not representative of the whole peel region, suggesting the use of image analysis rather than a colorimeter to measure the mean hue. Moreover, in longitudinal studies the LCC can suggest over which period the two methods are likely to be in agreement and where the simpler colorimeter method could be used. The performance of the LCC is evaluated using a small simulation study. Supplementary materials accompanying this paper appear online.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Barnhart, H. X. and Williamson, J. M. Modeling concordance correlation via GEE to evaluate reproducibility. Biometrics, 57(3):931–940, 2001.

    MathSciNet  Article  MATH  Google Scholar 

  2. Bron, I. U. and Jacomino, A. P. Ripening and quality of ’Golden’ papaya fruit harvested at different maturity stages. Brazilian Journal of Plant Physiology, 18(3):389–396, 2006.

    Article  Google Scholar 

  3. Carrasco, J. L., King, T. S., and Chinchilli, V. M. The concordance correlation coefficient for repeated measures estimated by variance components. Journal of Biopharmaceutical Statistics, 19(1):90–105, 2009.

    MathSciNet  Article  Google Scholar 

  4. Carrasco, J. L., Phillips, B. R., Puig-Martinez, J., King, T. S., and Chinchilli, V. M. Estimation of the concordance correlation coefficient for repeated measures using SAS and R. Computer Methods and Programs in Biomedicine, 109:293–304, 2013.

    Article  Google Scholar 

  5. Chávez-Sánchez, I., Carrillo-López, A., Vega-García, M., and Yahia, E. M. The effect of antifungal hot-water treatments on papaya postharvest quality and activity of pectinmethylesterase and polygalacturonase. Journal of Food Science and Technology, 50(1):101–107, 2013.

    Article  Google Scholar 

  6. Chen, C. C. and Barnhart, H. X. Assessing agreement with intraclass correlation coefficient and concordance correlation coefficient for data with repeated measures. Computational Statistics and Data Analysis, 60:132–145, 2013.

    MathSciNet  Article  MATH  Google Scholar 

  7. Chinchilli, V. M., Martel, J. K., Kumanyika, S., and Lloyd, T. A weighted concordance correlation coefficient for repeated measurement designs. Biometrics, 52(1):341–353, 1996.

    Article  MATH  Google Scholar 

  8. Darrigues, A., Hall, J., Knaap, E. V. D., Francis, D. M., Dujmovic, N., and Gray, S. Tomato analyzer-color test: A new tool for efficient digital phenotyping. Journal of the American Society for Horticultural Science, 133(4):579–586, 2008.

    Google Scholar 

  9. Evans, E. A. and Ballen, F. H. An overview of global papaya production, trade, and technical report, University of Florida, Florida, 2015.

    Google Scholar 

  10. Fisher, N. I. Statistical analysis of circular data. Cambridge University Press, New York, 1 edition, 1993.

    Google Scholar 

  11. Fitzmaurice, G., Davidian, M., Verbeke, G., and Molenberghs, G. Longitudinal data analysis. Chapman & Hall/CRC, New York, 1 edition, 2009.

    Google Scholar 

  12. Hiriote, S. and Chinchilli, V. M. Matrix-based concordance correlation coefficient for repeated measures. Biometrics, 67:1007–1016, 2011.

    MathSciNet  Article  MATH  Google Scholar 

  13. Ihaka, R., Murrell, P., Hornik, K., Fisher, J. C., and Zeileis, A. Color Space Manipulation, 2015.

  14. Kimball, S., Mattis, P., and The GIMP Development Team. GNU Image Manipulation Program, 2014. URL http://www.gimp.org/.

  15. King, T. S. and Chinchilli, V. M. A generalized concordance correlation coefficient for continuous and categorical data. Statistics in Medicine, 20(14):2131–2147, 2001.

    Article  Google Scholar 

  16. King, T. S., Chinchilli, V. M., and Carrasco, J. L. A repeated measures concordance correlation coefficient. Statistics in medicine, 26:3095–3113, 2007a.

    MathSciNet  Article  Google Scholar 

  17. King, T. S., Chinchilli, V. M., Wang, K.-L., and Carrasco, J. L. A class of repeated measures concordance correlation coefficients. Journal of Biopharmaceutical Statistics, 17:653–672, 2007b.

    MathSciNet  Article  Google Scholar 

  18. Konica Minolta. Precise colour communication, colour control from perception to instrumentation. Konica Minolta Sensing, 2003.

  19. Krippendorff, K. Bivariate agreement coefficients for reliability of data. Sociological Methodology, 2:139–150, 1970. ISSN 07591063.

  20. Lin, L. I. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1):255–268, 1989.

    Article  MATH  Google Scholar 

  21. Lindstrom, M. J. and Bates, D. M. Nonlinear mixed effects models for repeated measures data. Biometrics, 46(3):673–687, 1990.

    MathSciNet  Article  Google Scholar 

  22. Mardia, K. V., Hughes, G., Taylor, C. C., and Singh, H. A multivariate Von Mises distribution with applications to bioinformatics. The Canadian Journal of Statistics, 36(1):99–109, 2008.

    MathSciNet  Article  MATH  Google Scholar 

  23. Mardia, K. V. and Jupp, P. E. Directional Statistics. John Wiley & Sons, New York, 1st edition, 2000.

    Google Scholar 

  24. Martins, D. R., Barbosa, N. C., and Resende, E. D. D. Respiration rate of golden papaya stored under refrigeration and with different controlled atmospheres. Scientia Agricola, 71(5):345–355, 2014.

    Article  Google Scholar 

  25. Mendoza, F. and Aguilera, J. M. Application of image analysis for classification of ripening bananas. Journal of Food Science, 69(9):471–477, 2004.

    Article  Google Scholar 

  26. Mendoza, F., Dejmek, P., and Aguilera, J. M. Calibrated color measurements of agricultural foods using image analysis. Postharvest Biology and Technology, 41(3):285–295, 2006.

    Article  Google Scholar 

  27. Minolta. Chroma meter instruction manual. Minolta Company, Japan, 1991.

  28. Munsell Color Company. Munsell color charts for plant tissues. Munsell Color Company, Baltimore, 1952.

    Google Scholar 

  29. Oliveira, T. P., Zocchi, S. S., and Jacomino, A. P. Measuring color hue in ’Sunrise Solo’ papaya using a flatbed scanner. Revista Brasileira de Fruticultura, 2017.

  30. Pinheiro, J. C. and Bates, D. M. Mixed-effects models in S and S-PLUS. Springer, New York, 2000.

    Google Scholar 

  31. R core Team. The R environment, 2015. URL https://www.r-project.org/.

  32. Rathnayake, L. N. and Choudhary, P. K. Semiparametric modeling and analysis of longitudinal method comparison data. Statistics in Medicine, 36(13):2003–2015, 2017.

    MathSciNet  Article  Google Scholar 

  33. Ridler, T. and Calvard, S. Picture thresholding using an iterative selection method. IEEE Transactions on Systems, Man and Cybernetics, 8(8):630–632, 1978.

    Article  Google Scholar 

  34. Sancho, L. E. G., Yahia, E. M., Martínez-Téllez, M. A., and González-Aguilar, G. A. Effect of maturity stage of papaya maradol on physiological and biochemical parameters. American Journal of Agricultural and Biological Science, 5(2):194–203, 2010.

    Article  Google Scholar 

  35. Schweiggert, R. M., Steingass, C. B., Mora, E., Esquivel, P., and Carle, R. Carotenogenesis and physico-chemical characteristics during maturation of red fleshed papaya fruit (Carica papaya L.). Food Research International, 44(5):1373–1380, 2011.

    Article  Google Scholar 

  36. Silva-Ayala, T., Schnell, R. J., Meerow, A. W., Winterstein, M., Cervantes, C., and Brown, J. S. Determination of color and fruit traits of half-sib families of mango (Mangifera indica L .). Proceedings of the Florida State Horticultural Society, 118:253–257, 2005.

  37. Sivakumar, D. and Wall, M. M. Papaya fruit quality management during the postharvest supply chain. Food Reviews International, 29:24–48, 2013. ISSN 87559129.

  38. Thai, H. T., Mentré, F., Holford, N. H. G., Veyrat-Follet, C., and Comets, E. A comparison of bootstrap approaches for estimating uncertainty of parameters in linear mixed-effects models. Pharmaceutical Statistics, 12(3):129–140, 2013.

    Article  Google Scholar 

  39. Verbeke, G. and Molenberghs, G. Linear mixed models for longitudinal data. Springer, New York, 2000.

    Google Scholar 

  40. Wu, D. and Sun, D. W. Colour measurements by computer vision for food quality control - A review. Trends in Food Science and Technology, 29(1):5–20, 2013.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to FAPESP (Grants #2010/16955-1, São Paulo Research Foundation-FAPESP), CNPq (National Counsel of Technological and Scientific Development), University of São Paulo, and National University of Ireland that supported this research project. In addition, we would like to thank the professors Clarice Garcia Borges Demétrio and Renata Alcarde Sermarini for their important contributions on this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thiago de Paula Oliveira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (csv 30 KB)

Supplementary material 2 (R 30 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliveira, T.d.P., Hinde, J. & Zocchi, S.S. Longitudinal Concordance Correlation Function Based on Variance Components: An Application in Fruit Color Analysis. JABES 23, 233–254 (2018). https://doi.org/10.1007/s13253-018-0321-1

Download citation

Keywords

  • Colorimeter
  • Digital image analysis
  • Longitudinal data
  • Mixed-effects model
  • Postharvest