Insights of Global Sensitivity Analysis in Biological Models with Dependent Parameters

  • Julien Sainte-MarieEmail author
  • Paul-Henry Cournède


Global sensitivity analysis (GSA) has become an important tool in the modeling process of biological phenomenon to determine how the uncertainty of model inputs influences the model response. Usually, GSA methods assume the independence of input distributions and several heuristics for model design were defined to improve models’ design and parametrization (Cariboni et al. in Ecol Model, 203(1–2):167–182, 2007). However, recent developments of GSA with dependent inputs suggest reconsidering them from another perspective. In particular, Sobol’s indices were generalized to dependent inputs by explicitly dissociating structural and correlation influence on model outputs (Li et al. in J Phys Chem A, 114(19):6022–6032, 2010). This study considers the prey–predator model, Lotka–Volterra, and the individual plant growth model, Sunflo, to illustrate these new indices and aims to confront them to usual heuristics. The introduction of parameters’ dependence was managed with copulas’ theory, and generalized Sobol’s indices were estimated with the hierarchically orthogonal Gram–Schmidt procedure (Chastaing et al. in J Stat Comput Simul, 85(7):1306–1333, 2015). Strong changes were observed due to the introduction of parameters’ dependence, but classical heuristics remain consistent in the generalized framework. Although additional studies are essential to define more precisely these new heuristics, generalized Sobol’s indices are a promising statistical tool for deepening the understanding of biological model behavior. Supplementary materials accompanying this paper appear online.


Global sensitivity analysis Dependent variables Copulas theory and estimation Generalized Sobol indices Ecological models Functional structural plant models 

Supplementary material

13253_2018_343_MOESM1_ESM.pdf (168 kb)
Supplementary material 1 (pdf 168 KB)


  1. Baey, C., A. Mathieu, A. Jullien, S. Trevezas, and P.-H. Cournède 2017. Mixed-effects estimation in dynamic models of plant growth for the assessment of inter-individual variability. Journal of agricultural, biological and environmental statistics, In press.Google Scholar
  2. Cariboni, J., D. Gatelli, R. Liska, and A. Saltelli 2007. The role of sensitivity analysis in ecological modelling. Ecological modelling, 203(1–2):167–182. Special Issue on Ecological Informatics: Biologically-Inspired Machine Learning 4th Conference of the International Society for Ecological Informatics.Google Scholar
  3. Casadebaig, P., L. Guilioni, J. Lecoeur, A. Christophe, L. Champolivier, and P. Debaeke 2011. Sunflo, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agricultural and forest meteorology, 151(2):163–178.CrossRefGoogle Scholar
  4. Champion, M., G. Chastaing, S. Gadat, and C. Prieur 2015. L2-boosting for sensitivity analysis with dependent inputs. Statistica sinica, 25(4):1477–1502.MathSciNetzbMATHGoogle Scholar
  5. Chastaing, G. 2013. Indices de Sobol généralisés pour variables dépendantes. PhD thesis, Université de Grenoble.Google Scholar
  6. Chastaing, G., F. Gamboa, and C. Prieur 2015. Generalized sobol sensitivity indices for dependent variables: numerical methods. Journal of statistical computation and simulation, 85(7):1306–1333.MathSciNetCrossRefGoogle Scholar
  7. Cournéde, P.-H., Y. Chen, Q. Wu, C. Baey, and B. Bayol 2013. Development and evaluation of plant growth models : Methodology and implementation in the pygmalion platform. Mathematical modelling of natural phenomena, 8(4):112–130.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Davidian, M. and D. M. Giltinan 2003. Nonlinear models for repeated measurement data: an overview and update. Journal of agricultural, biological and environmental statistics, 8(4):387–419.CrossRefGoogle Scholar
  9. De Reffye, P., E. Heuvelink, D. Barthélémy, and P.-H. Cournède 2008. Plant growth models. In Encyclopedia of ecology, S. E. Jorgensen and B. Fath, eds., Pp.  2824–2837. Amsterdam, NX, Netherlands: Elsevier.CrossRefGoogle Scholar
  10. Hoeffding, W. 1948. A class of statistics with asymptotically normal distribution. The annals of mathematical statistics, 19(3):293–325.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Hooker, G. 2007. Generalized functional anova diagnostics for high-dimensional functions of dependent variables. Journal of computational and graphical statistics, 16(November):709–732.MathSciNetCrossRefGoogle Scholar
  12. Jaworski, P., F. Durante, W. K. Hardle, and T. Rychlik 2010. Copula theory and its applications. Heidelberg, BW, Germany: Springer-Verlag.CrossRefzbMATHGoogle Scholar
  13. Jones, M. C., J. S. Marron, and S. J. Sheather 1996. A brief survey of bandwidth selection for density estimation. Journal of the american statistical association, 91(433):401–407.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Kucherenko, S., S. Tarantola, and P. Annoni 2012. Estimation of global sensitivity indices for models with dependent variables. Computer physics communications, 183(4):937–946.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Lamboni, M., H. Monod, and D. Makowski 2011. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliability engineering & system safety, 96(4):450–459.CrossRefGoogle Scholar
  16. Lecoeur, J., R. Poiré-Lassus, A. Christophe, B. Pallas, P. Casadebaig, P. Debaeke, F. Vear, and L. Guilioni 2011. Quantifying physiological determinants of genetic variation for yield potential in sunflower. sunflo: a model-based analysis. Functional plant biology, 38(3):246–259.CrossRefGoogle Scholar
  17. Letort, V., P. Mahe, P.-H. Cournède, P. de Reffye, and B. Courtois 2008. Quantitative genetics and functional-structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Annals of botany, 101(8):951–963.Google Scholar
  18. Li, G. and H. Rabitz 2012. General formulation of hdmr component functions with independent and correlated variables. Journal of mathematical chemistry, 50(1):99–130.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Li, G., H. Rabitz, P. E. Yelvington, O. O. Oluwole, F. Bacon, C. E. Kolb, and J. Schoendorf 2010. Global sensitivity analysis for systems with independent and/or correlated inputs. The journal of physical chemistry A, 114(19):6022–32.CrossRefGoogle Scholar
  20. Monod, H., C. Naud, and D. Makowski 2006. Uncertainty and sensitivity analysis for crop models. In Working with dynamic crop models. Evaluation, analysis, parameterization, and applications., D. Wallach, D. Makowski, and J. W. Jones, eds., Pp.  55–100. Amsterdam, NX, Netherlands: Elsevier.Google Scholar
  21. Nelsen, R. B. 2007. An introduction to copulas. New York, NY, USA: Springer-Verlag.zbMATHGoogle Scholar
  22. Sainte-Marie, J., G. Viaud, and P.-H. Cournède 2017. Indices de sobol gènèralisès aux variables dèpendentes: tests de performance de l’algorithme hogs couplé à plusieurs estimateurs paramétriques. Journal de la société française de statistique, 158(1):68–89. Special Issue: Computer Experiments, Uncertainty and Sensitivity Analysis.Google Scholar
  23. Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola 2008. Global sensitivity analysis. Chichester, SXW, England: John Wiley & Sons.zbMATHGoogle Scholar
  24. Scaillet, O., A. Charpentier, and J.-D. Fermanian 2007. The estimation of copulas: theory and practice. In Copulas: from theory to application in finance, J. Rank, ed., Pp.  35–64. London, LDN, England: London : Risk Books.Google Scholar
  25. Sklar, M. 1959. Fonctions de répartition àn dimensions et leurs marges. Paris, IDF, France: Universitè Paris 8.Google Scholar
  26. Sobol, I. 1993. Sensitivity analysis for non-linear mathematical models. Mathematical modeling and computational experiment, 1(4):407–414.MathSciNetzbMATHGoogle Scholar
  27. Stone, C. J. 1994. The use of polynomial splines and their tensor products in multivariate function estimation. The annals of statistics, 22(1):118–184.MathSciNetCrossRefzbMATHGoogle Scholar
  28. Tardieu, F. 2003. Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in plant science, 8(1):9–14.CrossRefGoogle Scholar
  29. Villasenor Alva, J. A. and E. González Estrada 2009. A generalization of shapiro-wilk’s test for multivariate normality. Communications in statistics - theory and methods, 38(11):1870–1883.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Vos, J., J. B. Evers, G. H. Buck-Sorlin, B. Andrieu, M. Chelle, and P. H. B. De Visser 2009. Functional–structural plant modelling: a new versatile tool in crop science. Journal of experimental Botany, 61(8):2101–15.CrossRefGoogle Scholar
  31. Wu, Q.-L., P.-H. Cournède, and A. Mathieu 2012. An efficient computational method for global sensitivity analysis and its application to tree growth modelling. Reliability engineering & system safety, 107:35–43.CrossRefGoogle Scholar
  32. Zou, H. and T. Hastie 2005. Regularization and variable selection via the elastic net. Journal of the royal statistical society, series B, 67(2):301–320.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© International Biometric Society 2018

Authors and Affiliations

  1. 1.MICS laboratory, CentraleSupèlecUniversity of Paris-SaclayParisFrance

Personalised recommendations