Comparison of Models Analyzing a Small Number of Observed Meningitis Cases in Navrongo, Ghana

Article
  • 140 Downloads

Abstract

The “meningitis belt” is a region in sub-Saharan Africa where annual outbreaks of meningitis occur, with epidemics observed cyclically. While we know that meningitis is heavily dependent on seasonal trends, the exact pathways for contracting the disease are not fully understood and warrant further investigation. Most previous approaches have used large sample inference to assess impacts of weather on meningitis rates. However, in the case of rare events, the validity of such assumptions is uncertain. This work examines the meningitis trends in the context of rare events, with the specific objective of quantifying the underlying seasonal patterns in meningitis rates. We compare three main classes of models: the Poisson generalized linear model, the Poisson generalized additive model, and a Bayesian hazard model extended to accommodate count data and a changing at-risk population. We compare the accuracy and robustness of the models through the bias, RMSE, and standard deviation of the estimators, and also provide a detailed case study of meningitis patterns for data collected in Navrongo, Ghana.

Supplementary materials accompanying this paper appear online.

Keywords

Survival analysis Hazard rate Count data Multi-resolution hazard Changing at-risk population Time-varying covariates 

Notes

Acknowledgements

This work was supported by Grants NSF-GEO 1211668, NSF-DEB 1316334, and NIH-R01GM096655. The project utilized the Janus supercomputer, which is supported by the National Science Foundation (Award Number CNS-0821794) University of Colorado Boulder. The Janus supercomputer is a joint effort of University of Colorado Boulder, the University of Colorado Denver, and the National Center for Atmospheric Research. Janus is operated by the University of Colorado Boulder. The authors thank the researchers at NCAR and the REACCTING project, A. A. Forgor and A. Hodgson at Ghana Health Services, and P. Akweongo at the School of Public Health at the University of Ghana for collecting these data and for their helpful advice and input.

Supplementary material

13253_2016_270_MOESM1_ESM.r (38 kb)
Supplementary material 1 (r 38 KB)
13253_2016_270_MOESM2_ESM.r (3 kb)
Supplementary material 2 (r 3 KB)
13253_2016_270_MOESM3_ESM.r (2 kb)
Supplementary material 3 (r 1 KB)
13253_2016_270_MOESM4_ESM.r (2 kb)
Supplementary material 4 (r 1 KB)
13253_2016_270_MOESM5_ESM.r (3 kb)
Supplementary material 5 (r 2 KB)
13253_2016_270_MOESM6_ESM.r (11 kb)
Supplementary material 6 (r 10 KB)

References

  1. A. Abdussalam, A. Monaghan, V. Dukić, M. Hayden, T. Hopson, G. Leckebusch, and J. Thornes. Climate influences on meningitis incidence in northwest Nigeria. Weather, Climate, and Society, 6:62–76, 2014.Google Scholar
  2. A. Abdussalam, A. Monaghan, D. Steinhoff, V. Dukić, M. Hayden, T. Hopson, J. Thornes, and G. Leckebusch. The impact of climate change on meningitis in northwest Nigeria: An assessment using CMIP5 climate model simulations. Weather, Climate, and Society, 6:371–379, 2014.Google Scholar
  3. A. Abdussalam, A. Monoghan, V. Dukić, M. Hayden, T. Thomson, G. Leckebusch, and J. Thornes. Climate influences on meningitis incidence in northwest Nigeria. Weather, Climate, and Society, 6:62–76, 2014.Google Scholar
  4. L. Agier, M. Stanton, G. Soga, and P. Diggle. A multi-state spatio-temporal Markov model for categorized incidence of meningitis in sub-Saharan Africa. Epidemiology and infection, 141:1764–1771, 2013.Google Scholar
  5. H. Akaike. A new look at the statistical model identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:716–723, 1974.Google Scholar
  6. A. Beresniak, E. Bertherat, W. Perea, G. Soga, R. Souley, D. Dupont, and S. Hugonnet. A Bayesian network approach to the study of historical epidemiological databases: modelling meningitis outbreaks in the Niger. Bulletin of the World Health Organization, 90(6):412–417a, 2012.Google Scholar
  7. J. Besancenot, M. Boko, and P. Oke. Weather conditions and cerebrospinal meningitis in Benin (Gulf of Guinea, West Africa). European Journal of Epidemiology, 13:807–815, 1997.Google Scholar
  8. P. Bouman, J. Dignam, V. Dukic, and X.L. Meng. A multiresolution hazard model for multi-center survival studies: Application to Tamoxifen treatment in early stage breast cancer. Journal of the American Statistical Association, 102:1145–1157, 2007.Google Scholar
  9. P. Bouman, V. Dukic, and X.L. Meng. Bayesian multiresolution hazard model with application to an AIDS reporting delay study. Statistica Sinica, 15:325–357, 2005.Google Scholar
  10. H. Broutin, S. Philippon, G. Constantin de Magny, M. Courel, B. Sultan, and J. Guégan. Comparative study of meningitis dynamics across nine African countries: a global perspective. International Journal of Health Geographics, 6:29–37, 2007.Google Scholar
  11. P. Bycott and J. Taylor. A comparison of smoothing techniques for CD4 data measured with error in a time-dependent Cox proportional hazards model. Statistical in Medicine, 17:2061–2077, 1998.Google Scholar
  12. J. Cheesbrough, A. Morse, and S. Green. Meningococcal meningitis and carriage in western Zairea hypoendemic zone related to climate. Epidemiology and Infection, 114:75–92, 1995.Google Scholar
  13. Y. Chen, Y. Hagar, J. Dignam, and V. Dukic. Pruned Multiresolution Hazard (PMRH) models for time-to-event data. Bayesian Analysis, In Review, 2014.Google Scholar
  14. L. Cuevas, I. Jeanne, A. Molesworth, M. Bell, E. Savory, S. Connor, and M. Thomson. Risk mapping and early warning systems for the control of meningitis in Africa. Vaccine, 5:A12–A17, 2007.Google Scholar
  15. M. Daniels and J. Hogan. Missing data in longitudinal studies. Chapman and Hall/CRC Press, Boca Raton, Florida, USA, 2008.Google Scholar
  16. P. Diggle, Y. Guan, A. Hart, F. Paize, and M. Stanton. Estimating individual-level risk in spatial epidemiology using spatially aggregated information on the population at risk. Journal of the American Statistical Association, 105(492), 2010.Google Scholar
  17. J. Dignam, V. Dukic, S. Anderson, E. Mamounas, D. Wickerham, and N. Wolmark. Hazard of recurrence and adjuvant treatment effects over time in lymph node-negative breast cancer. Breast Cancer Research and Treatment, 116:595–602, 2009.Google Scholar
  18. V. Dukic and J. Dignam. Bayesian hierarchical multiresolution hazard model for the study of time-dependent failure patterns in early stage breast cancer. Bayesian Analysis, 2:591–610, 2007.Google Scholar
  19. V. Dukić, M. Hayden, T. Hopson A. Forgor, P. Akweongo, A. Hodgson, A. Monoghan, C. Wiedinmyer, T. Yoksas, T. Thomson, S. Trzaska, , and R. Pandya. The role of weather in meningitis outbreaks in Navrongo, Ghana: A generalized additive modeling approach. Journal of Agricultural, Biological and Environmental Statistics, 17:442–460, 2012.Google Scholar
  20. T. Ferguson. Prior distributions on spaces of probability measures. The Annals of Statistics, 2:615–629, 1974.Google Scholar
  21. C.P. Garcìa-Pando, M. Stanton, P. Diggle, S. Trzaska, R. Miller, J. Perlwitz, J. Baldasano, E. Cuevas, P. Ceccato, P. Yaka, and M. Thomson. Soil dust aerosols and wind as predictors of seasonal meningitis incidence in Niger. Environmental health perspectives, 122:679–686, 2014.Google Scholar
  22. A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data Analysis, 2nd edition. Chapman and Hall/CRC, Boca Raton, 2004.Google Scholar
  23. M. Glasser. Exponential survival with covariance. Journal of the American Statistical Association, 62:561–568, 1967.Google Scholar
  24. B. Greenwood. Meningococcal meningitis in Africa. Transaction of the Royal Society of Tropical Medicine and Hygiene, 93:341–353, 1999.Google Scholar
  25. B. Greenwood, I. Blakebrough, A. Bradley, S. Wali, and H. Whittle. Meningococcal disease and season in sub-Saharan Africa. Lancet, 1:1339–1342, 1984.Google Scholar
  26. B. Greenwood, A. Greenwood, A. Bradley, K. Williams, M. Hassan-King, F. Shenton, R. Wall, and R. Hayes. Factors influencing susceptibility to meningococcal disease during an epidemic in The Gambia, West Africa. Journal of Infection, 14:167–184, 1987.Google Scholar
  27. Y. Hagar, D. Albers, R. Pivovarov, H. Chase, V. Dukic, and N. Elhadad. Survival analysis with Electronic Health Record data: Experiments with Chronic Kidney Disease. Statistical Analysis and Data Mining, 7:385–403, 2014.Google Scholar
  28. Y. Hagar, Y. Chen, and V. Dukic. MRH package in R. http://cran.r-project.org/web/packages/MRH/index.html, 2014.
  29. T. Hanson. Inference for mixtures of finite Polya tree models. Journal of the American Statistical Association, 101:1548–1565, 2006.Google Scholar
  30. T. Hanson and W. Johnson. Modeling regression error with a mixture of Polya trees. Journal of the American Statistical Association, 97:1020–1033, 2002.Google Scholar
  31. T. Hastie and R. Tibshirani. Generalized additive models. Statistical Science, 1:297–318, 1986.Google Scholar
  32. T. Holford. The analysis of rates and of survivorship using log-linear models. Biometrics, 36:299–305, 1980.Google Scholar
  33. T.R. Holford. Life tables with concomitant information. Biometrics, 32:587–597, 1976.Google Scholar
  34. J.G. Ibrahim, M. Chen, and D. Sinha. Bayesian Survival Analysis. Springer, New York, 2001.Google Scholar
  35. S. Jackman, A. Tahk, A. Zeileis, C. Maimone, and J. Fearon. pscl: Political Science Computational Laboratory, Stanford University. https://cran.r-project.org/web/packages/pscl/index.html, 2015.
  36. J.D. Kalbfleisch and R.L. Prentice. The Statistical Analysis of Failure Time Data. SWiley, Chichester, 2002.Google Scholar
  37. J. Klein and M. Moeschberger. Survival Analysis: Techniques for Censored and Truncated Data. Springer, New York, 2003.Google Scholar
  38. N. Laird and D. Olivier. Covariance analysis of censored survival data using log-linear analysis techniques. Journal of the American Statistical Association, 76:231–240, 1981.Google Scholar
  39. D. Lambert. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34, 1992.Google Scholar
  40. L. Lapeyssonnie. Cerebrospinal meningitis in Africa. Bulletin of the World Health Organization, 28:3–114, 1963.Google Scholar
  41. P. Laplace. Memoir on the probability of causes and events. Statistical Science, 6:364–378, 1986.Google Scholar
  42. M. Lavine. Some aspects of Polya tree distributions for statistical modelling. The Annals of Statistics, 20:1222–1235, 1992.Google Scholar
  43. J. Leimkugel, A. Hodgson, A Adams Forgor, V. Plugger, J. Dangy, T. Smith, M. Achtman, S. Gagneux, and G. Pluschke. Clonal waves of Neisseria colonisation and disease in the African meningitis belt: Eight-year longitudinal study in northern Ghana. PLoS Medicine, 4:535–544, 2007.Google Scholar
  44. A. Molesworth, L. Cuevas, S. Connor, A. Morse, and M. Thomson. Environmental risk and meningitis epidemics in Africa. Emerging Infectious Diseases, 9:1287–1293, 2003.Google Scholar
  45. A. Molesworth, L. Cuevas, and M. Thomson. Forecasting meningitis epidemics in Africa. Liverpool: LSTM, 2002.Google Scholar
  46. P. Moore. Meningococcal meningitis in sub-Saharan Africa: A model for the epidemic process. Clinical Infections Diseases, 14:515–525, 1992.Google Scholar
  47. P. Moore, M. Reeves, B. Schwartz, B. Gellin, and C. Broome. Intercontinental spread of an epidemic group “A Neisseria Meningitidis strain”. Lancet, 2:260–263, 1989.Google Scholar
  48. P. Muliere and S. Walker. A Bayesian non-parametric approach to survival analysis using Polya trees. Scandinavian Journal of Statistics, 24:331–340, 1997.Google Scholar
  49. J. Nelder and R. Baker. Generalized linear models. Encyclopedia of Statistical Sciences, 1972.Google Scholar
  50. L. Nieto-Barajas and P. Müller. Rubbery Polya tree. Scandinavian Journal of Statistics, 39:166–184, 2012.Google Scholar
  51. P. Nyarko, P. Wontuo, A. Nazzar, J. Phillips, P. Ngom, and R. Binka. Navrongo DSS Ghana. Navrongo DSS Ghana, Ministry of Health, Navrongo Health Research Centre, Navrongo, Ghana, 2000.Google Scholar
  52. A. Oduro, G. Wa, D. Azongo, C. Debpuur, P. Wontuo, F. Kondayire, P. Welaga, A. Bawah, A. Nazzar, J. Williams, A. Hodgson, and F. Binka. Profile of the Navrongo health and demographic surveillance system. International Journal of Epidemiology, 41:968–976, 2012.Google Scholar
  53. R. Pandya, A. Hodgson, M. Hayden, P. Akweongo, T. Hopson, A. Forgor, T. Yoksas, M. Dalaba, V. Dukic, R. Mera, A. Dumont, K. McCormack, D. Anaseba, T. Awine, J. Boehnert, G. Nyaaba, A. Laing, and F. Semazzi. Using weather forecasts to help manage meningitis in the West African Sahel. Bulletin of the American Meteorological Society, 96:103–115, 2015.Google Scholar
  54. R.L. Prentice. Exponential survivals with censoring and explanatory variables. Biometrika, 60:279–288, 1973.Google Scholar
  55. L. Roberts. An ill wind, bringing meningitis. Science, 320:1710–1715, 2008.Google Scholar
  56. M. Stanton, L. Agier, B. Taylor, and P. Diggle. Towards realtime spatiotemporal prediction of district level meningitis incidence in sub-Saharan Africa. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177:661–678, 2014.Google Scholar
  57. B. Sultan. Influence of climate upon the meningitis onset in West Africa. Medicine Sciences, 21:470–471, 2005.Google Scholar
  58. B. Sultan, L. Chiapello, and M. Aouam. Le rôle du climat et des aérosols sur les Épidémies de méningite en Afrique de lOuest. PLoS Medicine, 2:43–49, 2005a.Google Scholar
  59. B. Sultan, K. Labadi, J. Guégan, and S. Janicot. Climate drives the meningitis epidemics onset in West Africa. PLoS Medicine, 2:43–49, 2005b.Google Scholar
  60. M. Thomson, A. Molesworth, M. Djingarey, K. Yameogo, F. Belanger, and L. Cuevas. Potential of environmental models to predict meningitis epidemics in Africa. Tropical Medicine and International Health, 1:781–788, 2006.Google Scholar
  61. C. Wiedinmyer, S. Akagi, R. Yokelson, L. Emmons, J. Al-Saadi, J. Orlando, and A. Soja. The Fire INventory from NCAR (FINN) – a high resolution global model to estimate the emissions from open burning. Geoscientific Model Development Discussions, 3:2439–2476, 2011.Google Scholar
  62. W. Wong and L. Ma. Optional Polya tree and Bayesian inference. The Annals of Statistics, 38:1433–1459, 2010.Google Scholar
  63. P. Yaka, B. Sultan, H. Broutin, S. Janicot, S. Philippon, and N. Fourquet. Relationships between climate and year-to-year variability in meningitis outbreaks: A case study in Burkina Faso and Niger. International Journal of Health Geographics, 7:34, 2008.Google Scholar
  64. L. Zhao and T. Hanson. Spatially dependent Polya tree modeling for survival data. Biometrics, 67:391–403, 2011.Google Scholar
  65. L. Zhao, T. Hanson, and B. Carlin. Mixtures of Polya trees for flexible spatial frailty survival modelling. Biometrika, 96:263–276, 2009.Google Scholar
  66. A. Zuur, E. Ieno, N. Walker, A. Saveliev, and G. Smith.Mixed Effects Models and Extensions in Ecology with R.Springer, New York, 2009.Google Scholar

Copyright information

© International Biometric Society 2016

Authors and Affiliations

  1. 1.Applied MathematicsUniversity of Colorado at BoulderBoulderUSA
  2. 2.National Center of Atmospheric Research (NCAR)BoulderUSA

Personalised recommendations