Advertisement

Bayesian Methods for Hierarchical Distance Sampling Models

  • C. S. Oedekoven
  • S. T. Buckland
  • M. L. Mackenzie
  • R. King
  • K. O. Evans
  • L. W. BurgerJr.
Article

Abstract

The few distance sampling studies that use Bayesian methods typically consider only line transect sampling with a half-normal detection function. We present a Bayesian approach to analyse distance sampling data applicable to line and point transects, exact and interval distance data and any detection function possibly including covariates affecting detection probabilities. We use an integrated likelihood which combines the detection and density models. For the latter, densities are related to covariates in a log-linear mixed effect Poisson model which accommodates correlated counts. We use a Metropolis-Hastings algorithm for updating parameters and a reversible jump algorithm to include model selection for both the detection function and density models. The approach is applied to a large-scale experimental design study of northern bobwhite coveys where the interest was to assess the effect of establishing herbaceous buffers around agricultural fields in several states in the US on bird densities. Results were compared with those from an existing maximum likelihood approach that analyses the detection and density models in two stages. Both methods revealed an increase of covey densities on buffered fields. Our approach gave estimates with higher precision even though it does not condition on a known detection function for the density model.

Key Words

Designed experiments Hazard-rate detection function Heterogeneity in detection probabilities Metropolis–Hastings update Point transect sampling RJMCMC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13253_2014_167_MOESM1_ESM.r (36 kb)
(R 36 kB)

References

  1. Bates, D. (2009a), “Adaptive Gauss–Hermite Quadrature for Generalized Linear or Nonlinear Mixed Models. R Package Version 0.999375-31,” Technical Report. http://lme4.r-forge.r-project.org/. Google Scholar
  2. Bates, D. (2009b), “Computational Methods for Mixed Models. R Package Version 0.999375-31,” Technical Report. http://lme4.r-forge.r-project.org/. Google Scholar
  3. Buckland, S. T., Burnham, K. P., and Augustin, N. H. (1997), “Model Selection: An Integral Part of Inference,” Biometrics, 53 (2), 603–618. CrossRefzbMATHGoogle Scholar
  4. Buckland, S. T., Goudie, I. B. J., and Borchers, D. L. (2000), “Wildlife Population Assessment: Past Developments and Future Directions,” Biometrics, 56, 1–12. CrossRefzbMATHGoogle Scholar
  5. Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (2001), Introduction to Distance Sampling, London: Oxford University Press. zbMATHGoogle Scholar
  6. Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (2004), Advanced Distance Sampling, London: Oxford University Press. zbMATHGoogle Scholar
  7. Buckland, S. T., Russell, R. E., Dickson, B. G., Saab, V. A., Gorman, D. G., and Block, W. M. (2009), “Analysing Designed Experiments in Distance Sampling,” Journal of Agricultural, Biological, and Environmental Statistics, 14, 432–442. CrossRefMathSciNetGoogle Scholar
  8. Cañadas, A., and Hammond, P. S. (2006), “Model-Based Abundance Estimates for Bottlenose Dolphins off Southern Spain: Implications for Conservation and Management,” Journal of Cetacean Research and Management, 8 (1), 13–27. Google Scholar
  9. Chelgren, N. D., Samora, B., Adams, M. J., and McCreary, B. (2011), “Using Spatiotemporal Models and Distance Sampling to Map the Space Use and Abundance of Newly Metamorphosed Western Toads (Anaxyrus Boreas),” Herpetological Conservation and Biology, 6 (2), 175–190. Google Scholar
  10. Conn, P. B., Laake, J. L., and Johnson, D. S. (2012), “A Hierarchical Modeling Framework for Multiple Observer Transect Surveys,” PLoS ONE, 7 (8), e42294. CrossRefGoogle Scholar
  11. Davison, A. C. (2003), Statistical Models, Cambridge: Cambridge University Press. CrossRefzbMATHGoogle Scholar
  12. Durban, J. W., and Elston, D. A. (2005), “Mark-Recapture with Occasion and Individual Effects: Abundance Estimation Through Bayesian Model Selection in a Fixed Dimensional Parameter Space,” Journal of Agricultural, Biological, and Environmental Statistics, 10 (3), 291–305. CrossRefGoogle Scholar
  13. Eguchi, T., and Gerrodette, T. (2009), “A Bayesian Approach to Line-Transect Analysis for Estimating Abundance,” Ecological Modelling, 220, 1620–1630. CrossRefGoogle Scholar
  14. Evans, K. O., Burger, L. W., Oedekoven, C. S., Smith, M. D., Riffell, S. K., Martin, J. A., and Buckland, S. T. (2013), “Multi-Region Response to Conservation Buffers Targeted for Northern Bobwhite,” The Journal of Wildlife Management, 77, 716–725. CrossRefGoogle Scholar
  15. Gelman, A., Roberts, G. O., and Gilks, W. R. (1996), “Efficient Metropolis Jumping Rules,” in Bayesian Statistics, Vol. 5, eds. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press, pp. 599–608. Google Scholar
  16. Gerrodette, T., and Eguchi, T. (2011), “Precautionary Design of a Marine Protected Area Based on a Habitat Model,” Endangered Species Research, 15 (2), 159–166. CrossRefGoogle Scholar
  17. Gimenez, O., Bonner, S. J., King, R., Parker, R. A., Brooks, S. P., Jamieson, L. E., Grosbois, V., Morgan, B. J. T., and Thomas, L. (2009), “WinBUGS for Population Ecologists: Bayesian Modeling Using Markov Chain Monte Carlo Methods,” in Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics, Vol. 3, eds. D. L. Thomson, E. G. Cooch, and M. J. Conroy, Berlin: Springer, pp. 883–915. CrossRefGoogle Scholar
  18. Green, P. J. (1995), “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination,” Biometrika, 82 (4), 711–732. CrossRefzbMATHMathSciNetGoogle Scholar
  19. Hastings, W. K. (1970), “Monte Carlo Sampling Methods Using Markov Chains and Their Applications,” Biometrika, 57 (1), 97–109. CrossRefzbMATHGoogle Scholar
  20. Hedley, S. L., and Buckland, S. T. (2004), “Spatial Models for Line Transect Sampling,” Journal of Agricultural, Biological, and Environmental Statistics, 9, 181–199. CrossRefGoogle Scholar
  21. Johnson, D. S., Laake, J. L., and Ver Hoef, J. M. (2010), “A Model-Based Approach for Making Ecological Inference from Distance Sampling Data,” Biometrics, 66, 310–318. CrossRefzbMATHMathSciNetGoogle Scholar
  22. Karunamuni, R. J., and Quinn II., T. J. (1995), “Bayesian Estimation of Animal Abundance for Line Transect Sampling,” Biometrics, 51, 1325–1337. CrossRefzbMATHMathSciNetGoogle Scholar
  23. King, R., Morgan, B. J. T., Gimenez, O., and Brooks, S. P. (2010), Bayesian Analysis for Population Ecology, London/Boca Raton: Chapman & Hall/CRC Press. Google Scholar
  24. Marcot, B. G., Holthausen, R. S., Raphael, M. G., Rowland, M. M., and Wisdom, M. J. (2001), “Using Bayesian Belief Networks to Evaluate Fish and Wildlife Population Viability Under Land Management Alternatives from an Environmental Impact Statement,” Forest Ecology and Management, 153, 29–42. CrossRefGoogle Scholar
  25. Marques, F. F. C., and Buckland, S. T. (2003), “Incorporating Covariates Into Standard Line Transect Analyses,” Biometrics, 53, 924–935. CrossRefMathSciNetGoogle Scholar
  26. McCulloch, C. E., and Searle, S. R. (2001), Generalized, Linear, and Mixed Models, New York: Wiley. zbMATHGoogle Scholar
  27. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953), “Equations of State Calculations by Fast Computing Machines,” Journal of Chemical Physics, 21 (6), 1087–1091. CrossRefGoogle Scholar
  28. Moore, J. E., and Barlow, J. (2011), “Bayesian State-Space Model of Fin Whale Abundance Trends from a 1991–2008 Time Series of Line-Transect Surveys in the California Current,” Journal of Applied Ecology, 48 (5), 1195–1205. CrossRefGoogle Scholar
  29. Oedekoven, C. S., Buckland, S. T., Mackenzie, M. L., Evans, K. O., and Burger, L. W. (2013), “Improving Distance Sampling: Accounting for Covariates and Non-independency Between Sampled Sites,” Journal of Applied Ecology, 50 (3), 786–793. CrossRefGoogle Scholar
  30. Royle, J. A., and Dorazio, R. M. (2008), Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities, San Diego: Academic Press. Google Scholar
  31. Royle, J. A., Dawson, D. K., and Bates, S. (2004), “Modelling Abundance Effects in Distance Sampling,” Ecology, 85 (6), 1591–1597. CrossRefGoogle Scholar
  32. Schmidt, J. H., Lindberg, M. S., Johnson, D. S., Conant, B., and King, J. (2009), “Evidence of Alaskan Trumpeter Swan Population Growth Using Bayesian Hierarchical Models,” The Journal of Wildlife Management, 73 (5), 720–727. CrossRefGoogle Scholar
  33. Schmidt, J. H., Rattenbury, K. L., Lawler, J. P., and MacCluskie, M. C. (2012), “Using Distance Sampling and Hierarchical Models to Improve Estimates of Dall’s Sheep Abundance,” The Journal of Wildlife Management, 76 (2), 317–327. CrossRefGoogle Scholar
  34. Sillett, T. S., Chandler, R. B., Royle, J. A., Kéry, M., and Morrison, S. A. (2012), “Hierarchical Distance-Sampling Models to Estimate Population Size and Habitat-Specific Abundance of an Island Endemic,” Ecological Applications, 22, 1997–2006. CrossRefGoogle Scholar
  35. Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., and Burnham, K. P. (2010), “Distance Software: Design and Analysis of Distance Sampling Surveys for Estimating Population Size,” Journal of Applied Ecology, 47, 5–14. CrossRefGoogle Scholar
  36. Zhang, S. (2011), “On Parametric Estimation of Population Abundance for Line Transect Sampling,” Environmental and Ecological Statistics, 18, 79–92. CrossRefMathSciNetGoogle Scholar

Copyright information

© International Biometric Society 2014

Authors and Affiliations

  • C. S. Oedekoven
    • 1
  • S. T. Buckland
    • 1
  • M. L. Mackenzie
    • 1
  • R. King
    • 1
  • K. O. Evans
    • 2
  • L. W. BurgerJr.
    • 2
  1. 1.Centre for Research into Ecological and Environmental Modelling, School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
  2. 2.Department of Wildlife, Fisheries & AquacultureMississippi State UniversityMississippi StateUSA

Personalised recommendations