Modeling the Diving Behavior of Whales: A Latent-Variable Approach with Feedback and Semi-Markovian Components

  • Roland Langrock
  • Tiago A. Marques
  • Robin W. Baird
  • Len Thomas


Recent years have seen a fast-growing body of literature concerned with the statistical modeling of animal movement in the two horizontal dimensions. On the other hand, there is very little statistical work that deals with animal movement in the vertical dimension. We present an approach that provides an important step in analyzing such data. In particular, we introduce a hidden Markov-type modeling approach for time series comprising the depths of a diving marine mammal, thus modeling movement in the water column. We first develop a baseline Markov-switching model, which is then extended to incorporate feedback and semi-Markovian components, motivated by the observations made for a particular species, Blainville’s beaked whale (Mesoplodon densirostris). The application of the proposed model to the beaked whale data reveals both strengths and weaknesses of the suggested modeling framework. The framework is general enough that we anticipate that it can be used for many other species given minor changes in the model structure.

Key Words

Behavioral state Distance sampling Hidden Markov model Maximum likelihood Movement model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13253_2013_158_MOESM1_ESM.txt (10 kb)
(TXT 10 kB)


  1. Altman, R. (2007), “Mixed Hidden Markov Models: an Extension of the Hidden Markov Model to the Longitudinal Data Setting,” Journal of the American Statistical Association, 102, 201–210. CrossRefzbMATHMathSciNetGoogle Scholar
  2. Bailleul, F., Pinaud, D., Hindell, M., Charrassin, J.-B., and Guinet, C. (2008), “Assessment of Scale-Dependent Foraging Behaviour in Southern Elephant Seals Incorporating the Vertical Dimension: a Development of the First Passage Time Method,” Journal of Animal Ecology, 77, 948–957. CrossRefGoogle Scholar
  3. Baird, R. W., Webster, D. L., McSweeney, D. J., Ligon, A. D., Schorr, G. S., and Barlow, J. (2006), “Diving Behaviour of Cuvier’s (Ziphius Cavirostris) and Blainville’s (Mesoplodon Densirostris) Beaked Whales in Hawai’i,” Canadian Journal of Zoology, 84, 1120–1128. CrossRefGoogle Scholar
  4. Baird, R. W., Webster, D. L., Schorr, G. S., Mcsweeney, D. J., and Barlow, J. (2008), “Diel Variation in Beaked Whale Diving Behavior,” Marine Mammal Science, 24, 630–642. CrossRefGoogle Scholar
  5. Borchers, D. L., Zucchini, W., Heide-Jørgensen, M. P., Cañadas, A., and Langrock, R. (2013), “Using Hidden Markov Models to Deal with Availability Bias on Line Transect Surveys,” Biometrics. doi: 10.1111/biom.12049. Google Scholar
  6. Codling, E. A., Plank, M. J., and Benhamou, S. (2008), “Random Walk Models in Biology,” Journal of the Royal Society Interface, 5, 813–834. CrossRefGoogle Scholar
  7. Cox, T. M., et al. (2006), “Understanding the Impacts of Anthropogenic Sounds on Beaked Whales,” Journal of Cetacean Research and Management, 7, 177–187. Google Scholar
  8. D’Amico, A., Gisiner, R. C., Ketten, D. R., Hammock, J. A., Johnson, C., Tyack, P. L., and Mead, J. (2009), “Beaked Whale Strandings and Naval Exercises,” Aquatic Mammals, 35, 452–472. CrossRefGoogle Scholar
  9. Dowd, M., and Joy, R. (2011), “Estimating Behavioral Parameters in Animal Movement Models Using a State-Augmented Particle Filter,” Ecology, 92, 568–575. CrossRefGoogle Scholar
  10. Guédon, Y. (2003), “Estimating Hidden Semi-Markov Chains from Discrete Sequences,” Journal of Computational and Graphical Statistics, 12, 604–639. CrossRefMathSciNetGoogle Scholar
  11. Harris, K. J., and Blackwell, P. G. (2013), “Flexible Continuous-Time Modelling for Heterogeneous Animal Movement,” Ecological Modelling, 255, 29–37. CrossRefGoogle Scholar
  12. Higgs, M. D., and Ver Hoef, J. M. (2012), “Discretized and Aggregated: Modeling Dive Depth of Harbor Seals from Ordered Categorical Data with Temporal Autocorrelation,” Biometrics, 68, 965–974. CrossRefzbMATHMathSciNetGoogle Scholar
  13. Holzmann, H., Munk, A., Suster, M., and Zucchini, W. (2006), “Hidden Markov Models for Circular and Linear-Circular Time Series,” Environmental and Ecological Statistics, 13, 325–347. CrossRefMathSciNetGoogle Scholar
  14. Hooker, S. K., Baird, R. W., and Fahlman, A. (2009), “Could Beaked Whales Get the Bends?: Effect of Diving Behaviour and Physiology on Modelled Gas Exchange for Three Species: Ziphius Cavirostris, Mesoplodon Densirostris and Hyperoodon Ampullatus,” Respiratory Physiology & Neurobiology, 167, 235–246. CrossRefGoogle Scholar
  15. Houser, D. S. (2006), “A Method for Modeling Marine Mammal Movement and Behavior for Environmental Impact Assessment,” IEEE Journal of Oceanic Engineering, 31, 76–81. CrossRefGoogle Scholar
  16. Langrock, R. (2012), “Flexible Latent-State Modelling of Old Faithful’s Eruption Inter-Arrival Times in 2009,” Australian & New Zealand Journal of Statistics, 54, 261–279. CrossRefMathSciNetGoogle Scholar
  17. Langrock, R., and Zucchini, W. (2011), “Hidden Markov Models with Arbitrary Dwell-Time Distributions,” Computational Statistics & Data Analysis, 55, 715–724. CrossRefzbMATHMathSciNetGoogle Scholar
  18. Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D., and Morales, J. M. (2012), “Flexible and Practical Modeling of Animal Telemetry Data: Hidden Markov Models and Extensions,” Ecology, 93, 2336–2342. CrossRefGoogle Scholar
  19. Langrock, R., Borchers, D. L., and Skaug, H. J. (2013), “Markov-Modulated Nonhomogeneous Poisson Processes for Modeling Detections in Surveys of Marine Mammal Abundance,” Journal of the American Statistical Association. doi: 10.1080/01621459.2013.797356. Google Scholar
  20. McCarthy, E., Moretti, D., Thomas, L., DiMarzio, N., Morrissey, R., Jarvis, S., Ward, J., Izzi, A., and Dilley, A. (2011), “Changes in Spatial and Temporal Distribution and Vocal Behavior of Blainville’s Beaked Whales (Mesoplodon Densirostris) During Multiship Exercises with Mid-Frequency Sonar,” Marine Mammal Science, 27, E206–E226. CrossRefGoogle Scholar
  21. McClintock, B. T., Russell, D. J. F., Matthiopoulos, J., and King, R. (2013), “Combining Individual Animal Movement and Ancillary Biotelemetry Data to Investigate Population-Level Activity Budgets,” Ecology, 94, 838–849. CrossRefGoogle Scholar
  22. Morales, J. M., Haydon, D. T., Frair, J. L., Holsinger, K. E., and Fryxell, J. M. (2004), “Extracting More Out of Relocation Data: Building Movement Models as Mixtures of Random Walks,” Ecology, 85, 2436–2445. CrossRefGoogle Scholar
  23. Patterson, T. A., Basson, M., Bravington, M. V., and Gunn, J. S. (2009), “Classifying Movement Behaviour in Relation to Environmental Conditions Using Hidden Markov Models,” Journal of Animal Ecology, 78, 1113–1123. CrossRefGoogle Scholar
  24. R Core Team (2012), R: a Language and Environment for Statistical Computing, Vienna: R Foundation for Statistical Computing. URL: Google Scholar
  25. Ramsay, J. O. (1988), “Monotone Regression Splines in Action,” Statistical Science, 3, 425–461. CrossRefGoogle Scholar
  26. Schick, R. S., Loarie, S. R., Colchero, F., Best, B. D., Boustany, A., Conde, D. A., Halpin, P. N., Joppa, L. N., McClellan, C. M., and Clark, J. S. (2008), “Understanding Movement Data and Movement Processes: Current and Emerging Directions,” Ecology Letters, 11, 1338–1350. CrossRefGoogle Scholar
  27. Schliehe-Diecks, S., Kappeler, P. M., and Langrock, R. (2012), “On the Application of Mixed Hidden Markov Models to Multiple Behavioural Time Series,” Interface Focus, 2, 180–189. CrossRefGoogle Scholar
  28. Tyack, P. L., Johnson, M., Aguilar de Soto, N., Sturlese, A., and Madsen, P. T. (2006), “Extreme Diving of Beaked Whales,” Journal of Experimental Biology, 21, 4238–4253. CrossRefGoogle Scholar
  29. Tyack, P. L., Zimmer, W. M. X., Moretti, D., Southall, B. L., Claridge, D. E., Durban, J. W., Clark, C. W., D’Amico, A., DiMarzio, N., Jarvis, S., McCarthy, E., Morrissey, R., Ward, J., and Boyd, I. (2011), “Beaked Whales Respond to Simulated and Actual Navy Sonar,” PLoS ONE, 6, e17009. CrossRefGoogle Scholar
  30. van der Hoop, J. M., Vanderlaan, A. S. M., and Taggart, C. T. (2012), “Absolute Probability Estimates of Lethal Vessel Strikes to North Atlantic Right Whales in Roseway Basin, Scotian Shelf,” Ecological Applications, 22, 2021–2033. CrossRefGoogle Scholar
  31. Walker, C. G., MacKenzie, M. L., Donovan, C. R., Kidney, D., Quick, N. J., and Hastie, G. D. (2011), “Classification of Animal Dive Tracks Via Automatic Landmarking, Principal Components Analysis and Clustering,” Ecosphere, 2, 92. CrossRefGoogle Scholar
  32. Yackulic, C. B., Blake, S., Deem, S., Kock, M., and Uriarte, M. (2011), “One Size Does Not Fit All: Flexible Models Are Required to Understand Animal Movement Across Scales,” Journal of Animal Ecology, 80, 1088–1096. CrossRefGoogle Scholar
  33. Zucchini, W., and MacDonald, I. L. (2009), Hidden Markov Models for Time Series: an Introduction Using R, London: Chapman & Hall. CrossRefGoogle Scholar
  34. Zucchini, W., Raubenheimer, D., and MacDonald, I. L. (2008), “Modeling Time Series of Animal Behavior by Means of a Latent-State Model with Feedback,” Biometrics, 64, 807–815. CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© International Biometric Society 2013

Authors and Affiliations

  • Roland Langrock
    • 1
  • Tiago A. Marques
    • 1
  • Robin W. Baird
    • 2
  • Len Thomas
    • 1
  1. 1.Centre for Research into Ecological and Environmental Modelling (CREEM) and School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
  2. 2.Cascadia Research CollectiveOlympiaUSA

Personalised recommendations