Advertisement

Agent-Based Inference for Animal Movement and Selection

  • Mevin B. Hooten
  • Devin S. Johnson
  • Ephraim M. Hanks
  • John H. Lowry
Article

Abstract

Contemporary ecologists often find themselves with an overwhelming amount of data to analyze. For example, it is now possible to collect nearly continuous spatiotemporal data on animal locations via global positioning systems and other satellite telemetry technology. In addition, there is a wealth of readily available environmental data via geographic information systems and remote sensing. We present a modeling framework that utilizes these forms of data and builds on previous research pertaining to the quantitative analysis of animal movement. This approach provides additional insight into the environmental drivers of residence and movement as well as resource selection while accommodating path uncertainty. The methods are demonstrated in an application involving mule deer movement in the La Sal Range, Utah, USA. Supplemental materials for this article are available online.

Key Words

Agent-based model Change of support Continuous model Hierarchical Bayesian model Individual-based model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13253_2010_38_MOESM1_ESM.pdf (43 kb)
(PDF 39.4 KB)
13253_2010_38_MOESM2_ESM.pdf (86 kb)
(PDF 82.0 KB)

References

  1. Albert, J. H., and Chib, S. (1993), “Bayesian Analysis of Binary and Polychotomous Response Data,” Journal of the American Statistical Association, 88, 669–679. MathSciNetCrossRefzbMATHGoogle Scholar
  2. Barraquand, F., and Benhamou, S. (2008), “Animal Movements in Heterogeneous Landscapes: Identifying Profitable Places and Homogeneous Movement Bouts,” Ecology, 89, 3336–3348. CrossRefGoogle Scholar
  3. Christ, A., Ver Hoef, J., and Zimmerman, D. L. (2008), “An Animal Movement Model Incorporating Home Range and Habitat Selection,” Environmental and Ecological Statistics, 15, 27–38. MathSciNetCrossRefGoogle Scholar
  4. Cressie, N. A. C., Calder, C. A., Clark, J. S., Ver Hoef, J. M., and Wikle, C. K. (2009), “Accounting for Uncertainty in Ecological Analysis: The Strengths and Limitations of Hierarchical Statistical Modeling,” Ecological Applications, 19, 553–570. CrossRefGoogle Scholar
  5. D’Eon, R. G., and Serrouya, R. (2005), “Mule Deer Seasonal Movements and Multiscale Resource Selection Using Global Positioning System Radiotelemetry,” Journal of Mammology, 86, 736–744. CrossRefGoogle Scholar
  6. Eckert, S. A., Moore, J. E., Dunn, D. C., Sagarminaga Van Buiten, R., Eckert, K. L., and Halpin, P. N. (2008), “Modeling Loggerhead Turtle Movement in the Mediterranean: Importance of Body Size and Oceanography,” Ecological Applications, 18, 290–308. CrossRefGoogle Scholar
  7. Flegal, J. M., Haran, M., and Jones, G. L. (2008), “Markov Chain Monte Carlo: Can We Trust the Third Significant Figure?” Statistical Science, 23, 250–260. MathSciNetCrossRefzbMATHGoogle Scholar
  8. Grimm, V., and Railsback, S. F. (2005), Individual-Based Modeling and Ecology, Princeton, New Jersey: Princeton University Press. CrossRefzbMATHGoogle Scholar
  9. Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H.-H., Weiner, J., Wiegand, T., and DeAngelis, D. L. (2005), “Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology,” Science, 310, 987–991. CrossRefGoogle Scholar
  10. Holyoak, M., Casagrandi, R., Nathan, R., Revilla, E., and Spiegel, O. (2008), “Trends and Missing Parts in the Study of Movement Ecology,” Proceedings of the National Academy of Sciences, 105, 19060–19065. CrossRefGoogle Scholar
  11. Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., VanDriel, J. N., and Wickham, J. (2007), “Completion of the 2001 National Land Cover Database for the Conterminous United States,” Photogrammetric Engineering and Remote Sensing, 73, 337–341. Google Scholar
  12. Hooten, M. B., and Wikle, C. K. (2010), “Statistical Agent-Based Models for Discrete Spatiotemporal Systems,” Journal of the American Statistical Association, 105, 236–248. MathSciNetCrossRefzbMATHGoogle Scholar
  13. Horne, J. S., Garton, E. O., Krone, S. M., and Lewis, J. S. (2007), “Analyzing Animal Movements Using Brownian Bridges,” Ecology, 88, 2354–2363. CrossRefGoogle Scholar
  14. Johnson, D. S., London, J. M., Lea, M.-A., and Durban, J. W. (2008), “Continuous-Time Correlated Random Walk Model for Animal Telemetry Data,” Ecology, 89, 1208–1215. CrossRefGoogle Scholar
  15. Jones, G. L., Haran, M., Caffo, B. S., and Neath, R. (2006), “Fixed-Width Output Analysis for Markov Chain Monte Carlo,” Journal of the American Statistical Association, 101, 1537–1547. MathSciNetCrossRefzbMATHGoogle Scholar
  16. Jonsen, I. D., Myers, R. A., and Flemming, J. M. (2003), “Meta-Analysis of Animal Movement Using State-Space Models,” Ecology, 84, 3055–3063. CrossRefGoogle Scholar
  17. Jonsen, I. D., Flemming, J. M., and Myers, R. A. (2005), “Robust State-Space Modeling of Animal Movement Data,” Ecology, 86, 2874–2880. CrossRefGoogle Scholar
  18. MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. (2002), “Estimating Site Occupancy Rates when Detection Probabilities are Less than One,” Ecology, 83, 2248–2255. CrossRefGoogle Scholar
  19. MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., and Franklin, A. B. (2003), “Estimating Site Occupancy, Colonization, and Local Extinction when a Species is Detected Imperfectly,” Ecology, 84, 2200–2207. CrossRefGoogle Scholar
  20. McFarlane, L. R. (2007), “Breeding Behavior and Space Use of Male and Female Mule Deer: An Examination of Potential Risk Differences for Chronic Wasting Disease Infection,” M.S. Thesis, Utah State University, Dept. of Wildland Resources. Google Scholar
  21. Miller, M. W., Hobbs, N. T., and Tavener, S. J. (2006), “Dynamics of Prion Disease Transmission in Mule Deer,” Ecological Applications, 16, 2208–2214. CrossRefGoogle Scholar
  22. Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E., and Fryxell, J. M. (2004), “Extracting More Out of Relocation Data: Building Movement Models as Mixtures of Random Walks,” Ecology, 85, 2436–2445. CrossRefGoogle Scholar
  23. O’Hara, R. B., and Sillanpaa, M. J. (2009), “A Review of Bayesian Variable Selection Methods: What, How and Which,” Bayesian Analysis, 4, 85–118. MathSciNetCrossRefzbMATHGoogle Scholar
  24. Ramsey, F. L., and Usner, D. (2003), “Persistence and Heterogeneity in Habitat Selection Studies Using Radio Telemetry,” Biometrics, 59, 332–340. MathSciNetCrossRefzbMATHGoogle Scholar
  25. Royle, J. A., and Dorazio, R. M. (2008), Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities, San Diego: Academic Press. Google Scholar
  26. Royle, J. A., and Kery, M. (2007), “A Bayesian State-Space Formulation of Dynamic Occupancy Models,” Ecology, 88, 1813–1823. CrossRefGoogle Scholar
  27. Tanner, M. A., and Wong, W. H. (1987), “The Calculation of Posterior Distributions by Data Augmentation,” Journal of the American Statistical Association, 82, 528–540. MathSciNetCrossRefzbMATHGoogle Scholar
  28. Tracey, J. A., Zhu, J., and Crooks, K. (2005), “A Set of Nonlinear Regression Models for Animal Movement in Response to a Single Landscape Feature,” Journal of Agricultural, Biological, and Environmental Statistics, 10, 1–18. CrossRefGoogle Scholar
  29. Tracey, J. A., Zhu, J., and Crooks, K. R. (2010, in press), “Modeling and Inference of Animal Movement Using Artificial Neural Networks,” Environmental and Ecological Statistics. doi: 10.1007/s10651-010-0138-8.
  30. Turchin, P. (1991), “Translating Foraging Movements in Heterogeneous Environments into the Spatial Distribution of Foragers,” Ecology, 72, 1253–1266. CrossRefGoogle Scholar
  31. — (1998), Quantitative Analysis of Movement, Sunderland, Massachusetts: Sinauer Associates, Inc. Publishers. zbMATHGoogle Scholar
  32. Wikle, C. K. (2003), “Hierarchical Bayesian Models for Predicting the Spread of Ecological Processes,” Ecology, 84, 1382–1394. CrossRefGoogle Scholar
  33. Xie, Y., and Carlin, B. (2006), “Measures of Bayesian Learning and Identifiability in Hierarchical Models,” Journal of Statistical Planning and Inference, 136, 3458–3477. MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© International Biometric Society 2010

Authors and Affiliations

  • Mevin B. Hooten
    • 1
  • Devin S. Johnson
    • 2
  • Ephraim M. Hanks
    • 1
  • John H. Lowry
    • 3
  1. 1.Department of Mathematics and StatisticsUtah State UniversityLoganUSA
  2. 2.NMMLNational Oceanic and Atmospheric AdministrationSeattleUSA
  3. 3.RS/GIS LaboratoryUtah State UniversityLoganUSA

Personalised recommendations