An Integrated Population Model From Constant Effort Bird-Ringing Data



Data from annual bird-ringing programs, in which catch effort is standardized, are routinely used to index abundance, productivity, and adult survival. Efficient models have been developed for each. Such monitoring schemes, based on ringing across a number of sites, are perhaps unique in providing this combination of demographic information and make the data particularly amenable to an integrated approach to population modeling. We develop a Bayesian approach and a deterministic population model uniting abundance, productivity, and survival. The method is applied to sedge warbler Acrocephalus schoenobaenus data from the British Trust for Ornithology’s Constant Effort Sites scheme. The possibility of “transient” birds needs to be incorporated within this analysis. We demonstrate how current methodology can efficiently be extended to use additional data from multiple within year recaptures when controlling for transience. Supplemental materials for this article are available online.

Key Words

Bayesian approach Capture-recapture Constant Effort Sites scheme Emigration Sedge warbler Acrocephalus schoenobaenus Transients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13253_2009_1_MOESM1_ESM.pdf (67 kb)
An Integrated Population Model from Constant Effort Bird-Ringing Data. (PDF 67.3 KB)


  1. Alker, P. J., and Redfern, C. P. F. (1996), “Double Brooding and Polygyny in Sedge Warblers Acrocephalus schoenobaenus Breeding in North-West England,” Bird Study, 43, 356–363. CrossRefGoogle Scholar
  2. Baillie, S. R., and Green, R. E. (1987), “The Importance of Variation in Recovery Rates When Estimating Survival Rates From Ringing Recoveries,” Acta Ornithologica, 23, 41–60. Google Scholar
  3. Baillie, S. R., Marchant, J. H., Leech, D. I., Joys, A. C., Noble, D. G., Barimore, C., Grantham, M. J., Risely, K., and Robinson, R. A. (2009), “Breeding Birds in the Wider Countryside: Their Conservation Status 2008,” Research Report 516, BTO, Thetford. Google Scholar
  4. Besbeas, P., and Freeman, S. N. (2006), “Methods for Joint Inference From Panel Survey and Demographic Data,” Ecology, 87, 1138–1145. CrossRefGoogle Scholar
  5. Besbeas, P., Freeman, S. N., Morgan, B. J. T., and Catchpole, E. A. (2002), “Integrating Mark-Recapture-Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters,” Biometrics, 58, 540–547. CrossRefMathSciNetGoogle Scholar
  6. Brooks, S. P., Catchpole, E. A., and Morgan, B. J. T. (2000), “Bayesian Animal Survival Estimation,” Statistical Science, 15, 357–376. CrossRefMathSciNetGoogle Scholar
  7. Brooks, S. P., King, R., and Morgan, B. J. T. (2004), “A Bayesian Approach to Combining Animal Abundance and Demographic Data,” Animal Biodiversity and Conservation, 27, 515–529. Google Scholar
  8. Burnham, K. P. (1990), “Survival Analysis of Recovery Data From Birds Ringed as Young: Efficiency of Analysis When Numbers Ringed Are Not Known,” The Ring, 13, 115–132. Google Scholar
  9. Caswell, H. (2001), Matrix Population Models: Construction, Analysis, and Interpretation (2nd ed.), Sunderland, MA: Sinauer. Google Scholar
  10. Cave, V. M., Freeman, S. N., Brooks, S. P., and King, R. (2008), “Survival of Acrocephalus Warblers in Britain: Robust Models for Recapture Data With Variable Capture Effort,” technical report, CREEM, University of St Andrews. Google Scholar
  11. Cave, V. M., Freeman, S. N., Brooks, S. P., King, R., and Balmer, D. E. (2009), “On Adjusting for Missed Visits in the Indexing of Abundance From ‘Constant Effort’ Ringing,” in Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics, Vol. 3, eds. D. L. Thomson, E. G. Cooch, and M. J. Conroy, New York: Springer, pp. 949–963. CrossRefGoogle Scholar
  12. Coiffait, L., Clark, J. E., Robinson, R. A., Blackburn, J. R., Grantham, M. J., Marchant, J. H., Barber, L., De Palacio, D., Griffin, B. M., and Moss, D. (2008), “Bird Ringing in Britain and Ireland in 2007,” Ringing & Migration, 24, 104–144. Google Scholar
  13. Cramp, S. (ed.) (1992), Handbook of the Birds of Europe the Middle East and North Africa: The Birds of the Western Palearctic, Vol. VI, Oxford, U.K.: Oxford University Press. Google Scholar
  14. DeSante, D. F., O’Grady, D. R., and Pyle, P. (1999), “Measures of Productivity and Survival Derived From Standardized Mist-Netting Are Consistent With Observed Population Changes,” Bird Study, 46, 178–188. CrossRefGoogle Scholar
  15. Fewster, R. M., Buckland, S. T., Siriwardena, G. M., Baillie, S. R., and Wilson, J. D. (2000), “Analysis of Population Trends for Farmland Birds Using Generalized Additive Models,” Ecology, 81, 1970–1984. CrossRefGoogle Scholar
  16. Freeman, S. N., and Crick, H. Q. P. (2003), “The Decline of the Spotted Flycatcher Muscicapa striata in the UK: An Integrated Population Model,” Ibis, 145, 400–412. CrossRefGoogle Scholar
  17. Freeman, S. N., and Morgan, B. J. T. (1992), “A Modelling Strategy for Recovery Data From Birds Ringed as Nestlings,” Biometrics, 48, 217–236. CrossRefGoogle Scholar
  18. Freeman, S. N., Robinson, R. A., Clark, J. A., Griffin, B. M., and Adams, S. Y. (2007), “Changing Demography and Population Decline in the Starling Sturnus vulgaris: A Multi-Site Approach to Integrated Population Modelling,” Ibis, 149, 587–596. CrossRefGoogle Scholar
  19. Green, P. J. (1995), “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination,” Biometrika, 82, 711–732. MATHCrossRefMathSciNetGoogle Scholar
  20. Gregory, R. D., Noble, D. G., and Custance, J. (2004), “The State of Play of Farmland Birds: Population Trends and Conservation Status of Lowland Farmland Birds in the United Kingdom,” Ibis, 146 (Supplement 2), 1–13. CrossRefGoogle Scholar
  21. Hines, J. E., Kendall, W. L., and Nichols, J. D. (2003), “On the Use of the Robust Design With Transient Capture-Recapture Models,” Auk, 120, 1151–1158. CrossRefGoogle Scholar
  22. Julliard, R., Jiguet, F., and Couvet, D. (2004), “Evidence for the Impact of Global Warming on the Long-Term Population Dynamics of Common Birds,” Proceedings of the Royal Society: Biological Sciences, 271 (Supplement 6), 490–492. CrossRefGoogle Scholar
  23. Kass, R. E., and Raftery, A. E. (1995), “Bayes Factors,” Journal of the American Statistical Association, 90, 773–795. MATHCrossRefGoogle Scholar
  24. King, R., Brooks, S. P., Mazzetta, C., Freeman, S. N., and Morgan, B. J. T. (2008), “Identifying and Diagnosing Population Declines: A Bayesian Assessment of Lapwings in the UK,” Journal of Royal Statistical Society, Ser. C, 57, 609–632. CrossRefMathSciNetGoogle Scholar
  25. King, R., Gimenez, O., Morgan, B. J. T., and Brooks, S. P. (2009), Bayesian Analysis for Population Ecology, Boca Raton: CRC Press. Google Scholar
  26. Lebreton, J.-D., Burnham, K. P., Clobert, J., and Anderson, D. R. (1992), “Modeling Survival and Testing Biological Hypotheses Using Marked Animals: A Unified Approach With Case Studies,” Ecological Monographs, 62, 67–118. CrossRefGoogle Scholar
  27. Link, W. A., and Sauer, J. R. (2002), “A Hierarchical Analysis of Population Change With Application to Cerulean Warblers,” Ecology, 83, 2832–2840. CrossRefGoogle Scholar
  28. North, P. M., and Morgan, B. J. T. (1979), “Modelling Heron Survival Using Weather Data,” Biometrics, 35, 667–681. CrossRefMathSciNetGoogle Scholar
  29. Peach, W. J. (1993), “Combining Mark-Recapture Data Sets for Small Passerines,” in Marked Individuals in the Study of Bird Population, eds. J.-D. Lebreton, and P. M. North, Basel, Switzerland: Birkhäuser, pp. 107–121. Google Scholar
  30. Peach, W. J., Baillie, S. R., and Balmer, D. E. (1998), “Long-Term Changes in the Abundance of Passerines in Britain and Ireland as Measured by Constant Effort Mist-Netting,” Bird Study, 45, 257–275. CrossRefGoogle Scholar
  31. Peach, W. J., Baillie, S. R., and Underhill, L. G. (1991), “Survival of British Sedge Warblers Acrocephalus schoenobaenus in Relation to West African Rainfall,” Ibis, 133, 300–305. CrossRefGoogle Scholar
  32. Peach, W. J., Buckland, S. T., and Baillie, S. R. (1996), “The Use of Constant Effort Mist-Netting to Measure Between-Year Changes in the Abundance and Productivity of Common Passerines,” Bird Study, 43, 142–156. CrossRefGoogle Scholar
  33. Peach, W. J., Siriwardena, G. M., and Gregory, R. D. (1999), “Long-Term Changes in Over-Winter Survival Rates Explain the Decline of Reed Buntings Emberiza schoeniclus in Britain,” Journal of Applied Ecology, 36, 798–811. CrossRefGoogle Scholar
  34. Pollock, K. H. (1982), “A Capture-Recapture Design Robust to Unequal Probabilities of Capture,” Journal of Wildlife Management, 46, 757–760. CrossRefGoogle Scholar
  35. Pradel, R., Hines, J. E., Lebreton, J.-D., and Nichols, J. D. (1997), “Capture-Recapture Survival Models Taking Account of Transients,” Biometrics, 53, 60–72. MATHCrossRefGoogle Scholar
  36. Reynolds, T. J., King, R., Harwood, J., Frederiksen, M., Harris, M. P., and Wanless, S. (2009), “Integrated Data Analysis in the Presence of Emigration and Mark Loss,” Journal of Agricultural, Biological, and Environmental Statistics, to appear. Google Scholar
  37. Robinson, R. A., Freeman, S. N., Balmer, D. E., and Grantham, M. J. (2007), “Cetti’s Warbler Cettia cetti: Analysis of an Expanding Population,” Bird Study, 54, 230–235. CrossRefGoogle Scholar
  38. Sauer, J. R., Hines, J. E., Gough, G., Thomas, I., and Peterjohn, B. G. (1997) The North American Breeding Bird Survey Results and Analysis. Version 96.4, Laurel, MD: Patuxent Wildlife Research Center. Google Scholar
  39. Schaub, M., Gimenez, O., Sierro, A., and Artellaz, R. (2007), “Use of Integrated Modeling to Enhance Estimates of Population Dynamics Obtained From Limited Data,” Conservation Biology, 21, 945–955. CrossRefGoogle Scholar
  40. Seber, G. A. F. (1971), “Estimating Age-Specific Survival Rates From Bird-Band Returns When the Reporting Rate Is Constant,” Biometrika, 58, 491–497. MATHCrossRefGoogle Scholar
  41. Siriwardena, G. M., Baillie, S. R., and Wilson, J. D. (1999), “Temporal Variation in the Annual Survival Rates of Six Granivorous Birds With Contrasting Population Trends,” Ibis, 141, 621–636. CrossRefGoogle Scholar
  42. Siriwardena, G. M., Freeman, S. N., and Crick, H. Q. P. (2001), “The Decline of the Bullfinch Pyrrhula pyrrhula in Britain: Is the Mechanism Known?” Acta Ornithologica, 36, 143–152. Google Scholar
  43. Underhill, L. G., and Prŷs-Jones, R. (1994), “Index Numbers for Waterbird Populations. I. Review and Methodology,” Journal of Applied Ecology, 31, 463–480. CrossRefGoogle Scholar
  44. Van Strien, A. J., Pannekoek, J., and Gibbons, D. W. (2001), “Indexing European Bird Population Trends Using Results of National Monitoring Schemes: A Trial of a New Method,” Bird Study, 48, 200–213. CrossRefGoogle Scholar
  45. Vounatsou, P., and Smith, A. F. M. (1995), “Bayesian Analysis of Ring-Recovery Data via Markov Chain Monte Carlo Simulation,” Biometrics, 51, 687–708. MATHCrossRefMathSciNetGoogle Scholar
  46. Wernham, C. V., Toms, M. P., Marchant, J. H., Clark, J. A., Siriwardena, G. M., and Baillie, S. R. (2002), The Migration Atlas: Movements of the Birds of Britain and Ireland, London: T. & A. D. Poyser. Google Scholar
  47. Williams, B. K., Nichols, J. D., and Conroy, M. J. (2002), Analysis and Management of Animal Populations, San Diego: Academic Press. Google Scholar

Copyright information

© International Biometric Society 2009

Authors and Affiliations

  • Vanessa M. Cave
    • 1
  • Ruth King
    • 1
  • Stephen N. Freeman
    • 2
  1. 1.Centre for Research into Ecological and Environmental ModellingUniversity of St AndrewsSt AndrewsU.K.
  2. 2.Centre for Ecology and HydrologyWallingfordU.K.

Personalised recommendations