Advertisement

A comparative study between normal electrocardiogram signal and those of some cardiac arrhythmias based on McSharry mathematical model

  • Pascalin Tiam KapenEmail author
  • Serge Urbain Kouam Kouam
  • Ghislain Tchuen
Scientific Paper
  • 17 Downloads

Abstract

In this paper, synthetic electrocardiogram signals (SECG) of eight cardiac arrhythmias (sinus bradycardia, junctional bradycardia, tachycardia, flutter, atrial extrasystole, ventricular extrasystole, left branch block and right branch block) are obtained numerically by solving the McSharry mathematical model (2003) based on three coupled ordinary differential equations with the fourth-order Runge–Kutta method. They are compared with normal electrocardiogram signal. Indeed, visual analysis of a section of electrocardiogram (ECG) signals of these arrhythmias was used to suggest suitable values for the parameters in the McSharry mathematical model. Results from numerical simulation showed a good agreement between the simulation results and the real cardiac arrhythmias ECG signals.

Keywords

Synthetic electrocardiogram signals Cardiac arrhythmias McSharry mathematical model 

Notes

Acknowledgements

The authors are grateful to Dr. YIAGNIGNI Euloge, cardiologist at the health center “Les promoteurs de la bonne santé” for his fruitful advices.

Funding

No funding was received.

Compliance with ethical standards

Conflict of interests

Pascalin TIAM KAPEN declares that he has no conflict of interest. KOUAM KOUAM Serge Urbain declares that he has no conflict of interest. TCHUEN Ghislain declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Gutierrez A, Lara M, Hernandez PR (2005) A QRS detector based on Haar wavelet, evaluation with MIT-BIH arrhythmia and European ST-T Databases. Computacion y Sistemas. 8:293–302Google Scholar
  2. 2.
    Kaneko M, Gotho T, Iseri F, Takeshita K, Ohki H, Sueda N (2011) QRS complex analysis using wavelet transform and two layered self-organizing map. In: Computing in cardiology. IEEE, New York, pp 813–816Google Scholar
  3. 3.
    Addison PS (2005) Wavelet transforms and the ECG: a review. Physiol Meas 26(5):R155–R199CrossRefGoogle Scholar
  4. 4.
    Burke MJ, Nasor M (2002) The time relationships of the constituent components of the human electrocardiogram. J Med Eng Technol 26(1):1–6CrossRefGoogle Scholar
  5. 5.
    Schuck A, Wisbeck JO (2003) QRS detector pre-processing using the complex wavelet transform, vol 3. In: Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society, 2003. IEEE, New York, pp 2590–2593Google Scholar
  6. 6.
    Vassilikos VP, Mantziari L, Dakos G, Kamperidis V, Chouvarda I, Chatzizisis YS et al (2014) QRS analysis using wavelet transformation for the prediction of response to cardiac resynchronization therapy: a prospective pilot study. J Electrocardiol 47(1):59–65CrossRefGoogle Scholar
  7. 7.
    Ieong CI, Mak PI, Lam CP, Dong C, Vai MI, Mak PU et al (2012) 0.83-QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35-CMOS. IEEE Trans Biomed Circuits Syst 6(6):586–595CrossRefGoogle Scholar
  8. 8.
    Zeng C, Lin H, Jiang Q, Xu M (2013) QRS complex detection using combination of mexican-hat wavelet and complex morlet wavelet. JCP 8(11):2951–2958Google Scholar
  9. 9.
    Kadambe S, Murray R, Boudreaux-Bartels GF (1999) Wavelet transform-based QRS complex detector. IEEE Trans Biomed Eng 46(7):838–848CrossRefGoogle Scholar
  10. 10.
    Hamilton PS, Tompkins WJ (1986) Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans Biomed Eng 12:1157–1165CrossRefGoogle Scholar
  11. 11.
    Okada M (1979) A digital filter for the ors complex detection. IEEE Trans Biomed Eng 12:700–703CrossRefGoogle Scholar
  12. 12.
    Jaswal G, Parmar R, Kaul A (2012) QRS detection using wavelet transform. Int J Eng Adv Technol 1(6):1–5Google Scholar
  13. 13.
    Dinh HAN, Kumar DK, Pah ND, Burton P (2001) Wavelets for QRS detection. Aust Phys Eng Sci Med 24(4):207CrossRefGoogle Scholar
  14. 14.
    Alvarado C, Arregui J, Ramos J, Pallàs-Areny R (2005) Automatic detection of ECG ventricular activity waves using continuous spline wavelet transform. In: 2005 2nd international conference on electrical and electronics engineering. IEEE, New York, pp. 189–192Google Scholar
  15. 15.
    Manikandan MS, Soman KP (2012) A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed Signal Process Control 7(2):118–128CrossRefGoogle Scholar
  16. 16.
    Gutiérrez-Gnecchi JA, Morfin-Magana R, Lorias-Espinoza D, del Carmen Tellez-Anguiano A, Reyes-Archundia E, Méndez-Patiño A, Castañeda-Miranda R (2017) DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomed Signal Process Control 32:44–56CrossRefGoogle Scholar
  17. 17.
    Holden AV, Poole MJ, Tucker JV (1995) Reconstructing the heart. Chaos Solitons Fractals 5(3–4):691–704CrossRefGoogle Scholar
  18. 18.
    Boyett M, Holden AV, Kodama I, Suzuki R, Zhang H (1995) Atrial modulation of sinoatrial pacemaker rate. Chaos Solitons Fractals 5(3–4):425–438CrossRefGoogle Scholar
  19. 19.
    Holden AV, Biktashev VN (2002) Computational biology of propagation in excitable media models of cardiac tissue. Chaos Solitons Fractals 13(8):1643–1658CrossRefGoogle Scholar
  20. 20.
    Poole MJ, Holden AV, Tucker JV (2002) Hierarchical reconstructions of cardiac tissue. Chaos Solitons Fractals 13(8):1581–1612CrossRefGoogle Scholar
  21. 21.
    Gois SR, Savi MA (2009) An analysis of heart rhythm dynamics using a three-coupled oscillator model. Chaos Solitons Fractals 41(5):2553–2565CrossRefGoogle Scholar
  22. 22.
    Tlili M, Maalej A, Romdhane MB, Rivet F, Dallet D, Rebai C (2016) Mathematical modeling of clean and noisy ECG signals in a level-crossing sampling context. In: International symposium on signal, image, video and communications (ISIVC). IEEE, New York, pp 359–363Google Scholar
  23. 23.
    Wu HT, Wu HK, Wang CL, Yang YL, Wu WH et al (2016) Modeling the pulse signal by wave-shape function and analyzing by synchrosqueezing transform. PLoS ONE 11(6):e0157135.  https://doi.org/10.1371/journal.pone.0157135 CrossRefGoogle Scholar
  24. 24.
    Tripathy RK, Mendez AZ, de la Serna JAO, Arrieta Paternina MR, Arrieta JG (2018) Naik GR (2018) Detection of life threatening ventricular arrhythmia using digital taylor fourier transform. Front Physiol 9:722CrossRefGoogle Scholar
  25. 25.
    Raj S, Ray KC (2018) Sparse representation of ECG signals for automated recognition of cardiac arrhythmias. Expert Syst Appl 105:49–64CrossRefGoogle Scholar
  26. 26.
    Raka AG, Naik GR, Chai R (2017) Computational algorithms underlying the time-based detection of sudden cardiac arrest via electrocardiographic markers. Appl Sci 7(9):954CrossRefGoogle Scholar
  27. 27.
    de Albuquerque VHC, Nunes TM, Pereira DR, Luz EJDS, Menotti D, Papa JP, Tavares JMR (2018) Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Comput Appl 29(3):679–693CrossRefGoogle Scholar
  28. 28.
  29. 29.
    McSharry PE, Clifford GD, Tarassenko L, Smith LA (2003) A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans Biomed Eng 50(3):289–294CrossRefGoogle Scholar
  30. 30.
    https://www.physionet.org. Accessed 08 Nov 2018

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2019

Authors and Affiliations

  • Pascalin Tiam Kapen
    • 1
    • 2
    Email author
  • Serge Urbain Kouam Kouam
    • 2
  • Ghislain Tchuen
    • 2
  1. 1.Université des Montagnes, ISSTBangangtéCameroon
  2. 2.University of Dschang, LISIE/L2MSPBandjounCameroon

Personalised recommendations