A comparative study of three small-field detectors for patient specific stereotactic arc dosimetry

  • Luke K. WebbEmail author
  • Emma K. Inness
  • Paul H. Charles
Technical Paper


This paper examines the difference in patient specific dosimetry using three different detectors of varying active volume, density and composition, for quality assurance of stereotactic treatments. A PTW 60017 unshielded electron diode, an Exradin W1 scintillator, and a PTW 31014 PinPoint small volume ionisation chamber were setup in a Lucy 3D QA phantom, and were positioned at the isocentre of an Elekta Axesse, with beam modulator collimator, using Exactrac and a HexaPODTM couch. Dose measurements were acquired for 43 stereotactic arcs, and compared to BrainLAB iPlan version 3.0.0 treatment planning system (TPS) calculations using a pencil beam algorithm. It was found that for arcs with field sizes \(>15\) mm, the properties of a detector have minimal impact on the measured doses, with all three detectors agreeing with the TPS (to within 5%). However, for field sizes \(<15\) mm, only the scintillator was found to yield results to within 5% of the TPS. The dose discrepancies were found to increase with decreasing field size. It is recommended that for field sizes \(<15\) mm, a water equivalent dosimeter like the Exradin W1 scintillator be used in order to minimise detector composition perturbations in the measured doses.


Scintillator Stereotactic radiotherapy Small fields Patient dose verification 


Compliance with ethical standards

Conflicts of interest

The authors declares that we have no conflicts of interest.

Ethical approval

This study was performed using phantoms, as per my compliance with ethical standards there were no human or animal participants and therefore the study did not require ethics approval.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

13246_2018_622_MOESM1_ESM.png (32 kb)
Supplementary material 1 (PNG 29 KB)


  1. 1.
    Li XA, Soubra M, Szanto J, Gerig LH (1995) Lateral electron equilibrium and electron contamination in measurements of head-scatter factors using miniphantoms and brass caps. Med Phys 22(7):1167–1170CrossRefPubMedGoogle Scholar
  2. 2.
    Zhu TC, Bjärngard BE (1994) The head-scatter factor for small field sizes. Med Phys 21(1):65–68CrossRefPubMedGoogle Scholar
  3. 3.
    Das IJ, Ding GX, Ahnesjö A (2008) Small fields: Nonequilibrium radiation dosimetry. Med Phys 35(1):206–215CrossRefPubMedGoogle Scholar
  4. 4.
    Scott AJD, Kumar S, Nahum AE, Fenwick JD (2012) Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields. Phys Med Biol 57(14):4461CrossRefPubMedGoogle Scholar
  5. 5.
    Fiandra C, Fusella M, Giglioli FR, Filippi AR, Mantovani C, Ricardi U, Ragona R (2013) Comparison of Gafchromic EBT2 and EBT3 for patient-specific quality assurance: cranial stereotactic radiosurgery using volumetric modulated arc therapy with multiple noncoplanar arcs. Med Phys 40(8):082105CrossRefPubMedGoogle Scholar
  6. 6.
    Hardcastle N, Basavatia A, Bayliss A, Tomé WA (2011) High dose per fraction dosimetry of small fields with Gafchromic EBT2 film. Med Phys 38(7):4081–4085CrossRefPubMedGoogle Scholar
  7. 7.
    Palmer AL, Dimitriadis A, Nisbet A, Clark CH (2015) Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification. Phys Med Biol 60(22):8741CrossRefPubMedGoogle Scholar
  8. 8.
    Baek JG, Jang HS, Kim EC, Lee YH, Oh YK, Kim SK (2015) Evaluation of the applicability of pinpoint ion chambers for SRS dosimetric quality assurance. J Korean Phys Soc 66(11):1771–1776CrossRefGoogle Scholar
  9. 9.
    Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D, Molineu A, Palta JR, Ramsey CR, Salter BJ, Shi J, Xia P, Yue NJ, Xiao Y (2009) IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 36(11):5359–5373CrossRefPubMedGoogle Scholar
  10. 10.
    Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, Keall P, Lovelock M, Meeks S, Papiez L, Purdie T, Sadagopan R, Schell MC, Salter B, Schlesinger DJ, Shiu AS, Solberg T, Song DY, Stieber V, Timmerman R, Tomé WA, Verellen D, Wang L, Yin F-F (2010) Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 37(8):4078–4101CrossRefPubMedGoogle Scholar
  11. 11.
    Taylor ML, Kron T, Franich RD (2011) A contemporary review of stereotactic radiotherapy: inherent dosimetric complexities and the potential for detriment. Acta Oncol 50(4):483–508CrossRefPubMedGoogle Scholar
  12. 12.
    Charles PH, Cranmer-Sargison G, Thwaites DI, Crowe SB, Kairn T, Knight RT, Kenny J, Langton CM, Trapp JV (2014) A practical and theoretical definition of very small field size for radiotherapy output factor measurements. Med Phys 41(4):41707CrossRefGoogle Scholar
  13. 13.
    Alfonso R, Andreo P, Capote R, Saiful Huq M, Kilby W, Kjäll P, Mackie TR, Palmans H, Rosser K, Seuntjens J, Ullrich W, Vatnitsky S (2008) A new formalism for reference dosimetry of small and nonstandard fields. Med Phys 35(11):5179–5186CrossRefPubMedGoogle Scholar
  14. 14.
    Francescon P, Cora S, Satariano N (2011) Calculation of kQclin, Qmsrfclin, fmsr for several small detectors and for two linear accelerators using Monte Carlo simulations. Med Phys 38(12):6513–6527CrossRefPubMedGoogle Scholar
  15. 15.
    Pappas E, Maris TG, Zacharopoulou F, Papadakis A, Manolopoulos S, Green S, Wojnecki C (2008) Small SRS photon field profile dosimetry performed using a PinPoint air ion chamber, a diamond detector, a novel silicon-diode array (DOSI), and polymer gel dosimetry. Analysis and intercomparison. Med Phys 35(10):4640–4648CrossRefPubMedGoogle Scholar
  16. 16.
    Beddar AS, Kinsella KJ, Ikhlef A, Sibata CH (2001) A miniature scintillator-fiberoptic-PMT detector system for the dosimetry of small fields in stereotactic radiosurgery. IEEE Trans Nucl Sci 48(3):924–928CrossRefGoogle Scholar
  17. 17.
    Beddar AS, Mackie TR, Attix FH (1992) Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations. Phys Med Biol 37:1883CrossRefPubMedGoogle Scholar
  18. 18.
    Beddar AS, Mackie TR, Attix FH (1992) Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements. Phys Med Biol 37(10):1901CrossRefPubMedGoogle Scholar
  19. 19.
    Underwood TSA, Rowland BC, Ferrand R, Vieillevigne L (2015) Application of the Exradin W1 scintillator to determine Ediode 60017 and microDiamond 60019 correction factors for relative dosimetry within small MV and FFF fields. Phys Med Biol 60(17):6669CrossRefPubMedGoogle Scholar
  20. 20.
    Papaconstadopoulos P, Tessier F, Seuntjens J (2014) On the correction, perturbation and modification of small field detectors in relative dosimetry. Phys Med Biol 59(19):5937CrossRefPubMedGoogle Scholar
  21. 21.
    Kamio Y, Bouchard H (2014) Correction-less dosimetry of nonstandard photon fields: a new criterion to determine the usability of radiation detectors. Phys Med Biol 59(17):4973CrossRefPubMedGoogle Scholar
  22. 22.
    Guillot M, Gingras L, Archambault L, Beddar S, Beaulieu L (2011) Spectral method for the correction of the Cerenkov light effect in plastic scintillation detectors: a comparison study of calibration procedures and validation in Cerenkov light-dominated situations. Med Phys 38(4):2140–2150CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kutcher GJ, Coia L, Gillin M, Hanson WF, Leibel S, Morton RJ, Palta JR, Purdy JA, Reinstein LE, Svensson GK et al (1994) Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40. Med Phys 21:581–618CrossRefPubMedGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2018

Authors and Affiliations

  • Luke K. Webb
    • 1
    Email author
  • Emma K. Inness
    • 1
  • Paul H. Charles
    • 1
    • 2
  1. 1.Radiation OncologyPrincess Alexandra HospitalBrisbaneAustralia
  2. 2.Science & Engineering FacultyQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations