Cell-shaped silicon-on-insulator microdosimeters: characterization and response to 239PuBe irradiations

  • Anthony Mazza
  • Wayne Newhauser
  • Stephen Pittman
  • Andrew Halloran
  • Paul Maggi
  • Linh Tran
  • Brent Gila
  • Anatoly Rosenfeld
  • James Ziegler
Scientific Paper


This work tested the feasibility of a silicon-on-insulator microdosimeter, which mimics the size and shape of specific cells within the human body, to determine dose equivalent from neutron irradiation. The microdosimeters were analyzed in terms of their basic diode characteristics, i.e., leakage current as a function of bias voltage. Lineal energy spectra were acquired using two different converter layers placed atop the microdosimeter: a tissue-substitute converter made from high-density polyethylene, and a boron converter consisting of epoxy coated with boron powder. The spectra were then converted into absorbed dose and dose equivalent. Experimental results were compared to Monte Carlo simulations of the neutron irradiations, revealing good agreement. Uncertainty in the dose equivalent determinations was 7.5% when using the cell-shaped microdosimeter with the tissue-substitute converter and 13.1% when using the boron converter. This work confirmed that the SOI approach to cell-mimicking microdosimetry is feasible.


Microdosimetry Silicon-on-insulator (SOI) Radiation protection 



This work was supported in part by a research agreement between United States Naval Academy and Louisiana State University: Contract No N00189-13-P-0786.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Pisacane VL et al (2006) MIDN: a spacecraft microdosimeter mission. Radiat Prot Dosimetry 120(1–4):421–426CrossRefPubMedGoogle Scholar
  2. 2.
    Pisacane VL et al (2011) Microdosemeter instrument (MIDN) for assessing risk in space. Radiat Prot Dosimetry 143(2–4):398–401CrossRefPubMedGoogle Scholar
  3. 3.
    Livingstone J et al (2012) Large area silicon microdosimeter for dosimetry in high LET space radiation fields: charge collection study. IEEE Trans Nucl Sci 59(6):3126–3132CrossRefGoogle Scholar
  4. 4.
    Hu N (2013) Silicon-on-insulator microdosimeter for space application. In: Faculty of Engineering, University of Wollongong, WollongongGoogle Scholar
  5. 5.
    Lai NS et al (2008) Development and fabrication of cylindrical silicon-on-insulator microdosimeter arrays. In Nuclear Science Symposium Conference Record NSS ‘08. IEEEGoogle Scholar
  6. 6.
    Byrne HL et al (2013) Radiation damage on sub-cellular scales: beyond DNA. Phys Med Biol 58(5):1251–1267CrossRefPubMedGoogle Scholar
  7. 7.
    Bradley PD, Rosenfeld A, Zaider M (2001) Solid state microdosimetry. Nucl Instrum Methods Phys Res B 184(1–2):135–157CrossRefPubMedGoogle Scholar
  8. 8.
    Rozenfeld A, (2013) MIDN-4 Technical Process Notes. In: Ziegler JF (ed). Centre for Medical Radiation Physics, University of Wollongong. pp 1–4Google Scholar
  9. 9.
    Otake M, Schull WJ (1991) A review of forty-five years study of Hiroshima and Nagasaki atomic bomb survivors. Radiation cataract. J Radiat Res 32:283–293CrossRefPubMedGoogle Scholar
  10. 10.
    Ainsbury EA et al (2009) Radiation cataractogenesis: a review of recent studies. Radiat Res 172(1):1–9CrossRefPubMedGoogle Scholar
  11. 11.
    Robman L, Taylor H (2005) External factors in the development of cataract. Eye 19(10):1074–1082CrossRefPubMedGoogle Scholar
  12. 12.
    Feng L, Stern DM, Pile-Spellman J (1999) Human endothelium: endovascular biopsy and molecular analysis. Radiology 212(3):655–664CrossRefPubMedGoogle Scholar
  13. 13.
    Baker JE, Moulder JE, Hopewell JW (2011) Radiation as a risk factor for cardiovascular disease. Antioxid Redox Signal 15(7):1945–1956CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yusuf SW, Sami S, Daher IN (2011) Radiation-induced heart disease: a clinical update. Cardiol Res Pract 2011:9Google Scholar
  15. 15.
    Potter CMF et al (2012) Shape and compliance of endothelial cells after shear stress in vitro or from different Aortic Regions: scanning ion conductance microscopy study. PLoS ONE 7(2):1–5CrossRefGoogle Scholar
  16. 16.
    Malek AM, Izumo S (1996) Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci 109(Pt 4):713–726PubMedGoogle Scholar
  17. 17.
    Yanoff M, Duker JS, Augsburger JJ (2009) Ophthalmology. Mosby Elsevier, LondonGoogle Scholar
  18. 18.
    Ohashi T, Sato M (2005) Remodeling of vascular endothelial cells exposed to fluid shear stress: experimental and numerical approach. Fluid Dyn Res 37(1–2):40–59CrossRefGoogle Scholar
  19. 19.
    Mazza A et al (2013) A proposal for a new silicon-on-insulator microdosimeter to model radiation interactions with specific sensitive volumes representative of living cells. In: Research Agreement between United States Naval Academy and Louisiana State University Contract No. N00189-13-P-0786. Internal Report. LSU. Baton Rouge, LAGoogle Scholar
  20. 20.
    Brown, N.A.P., Bron AJ (1987) An estimate of the human lens epithelial cell size in vivo. Exp Eye Res 44(6):899–906CrossRefPubMedGoogle Scholar
  21. 21.
    Masters BR et al (1997) Confocal light microscopy and scanning electron microscopy of the human eye lens. Exp Eye Res 64(3):371–377CrossRefPubMedGoogle Scholar
  22. 22.
    Garipcan B et al (2011) Image analysis of endothelial microstructure and endothelial cell dimensions of human arteries—a preliminary study. Adv Eng Mater 13(1–2):B54–B57CrossRefGoogle Scholar
  23. 23.
    Rozenfeld, A. (2013) MIDN-4 Technical Notes. Ziegler JF (ed). Centre for Medical Radiation Physics, University of Wollongong. p 8Google Scholar
  24. 24.
    Pospisil S, Granja C.(2009) Neutrons and their Detection with silicon diodes. In nuclear physics methods and Accelerators in Biology and Medicine, Fifth International Summer School. American Institute of PhysicsGoogle Scholar
  25. 25.
    Ziegler JF, Biersack JP, Ziegler MD (2012) SRIM: the stopping and range of ions in matter. SRIM Co, ChesterGoogle Scholar
  26. 26.
    Kellerer AM (1971) Considerations on the random traversal of convex bodies and solutions for general cylinders. Radiat Res 47(2):359–376CrossRefPubMedGoogle Scholar
  27. 27.
    Bradley PD, Rosenfeld A (1998) Tissue equivalence correction for silicon microdosimetry detectors in boron neutron capture therapy. Med Phys 25(11):2220–2225CrossRefPubMedGoogle Scholar
  28. 28.
    Wroe A, Rosenfeld A, Schulte R (2007) Out-of-field dose equivalents delivered by proton therapy of prostate cancer. Med Phys 34(9):3449–3456CrossRefPubMedGoogle Scholar
  29. 29.
    Berger MJ et al (2005) ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions. (version 1.2.3). [Online]. http://physics.nist.gov/Star [11/14/2013] 2005, National Institute of Standards and Technology, Gaithersburg
  30. 30.
    ICRU (1986) The quality factor in radiation protection (Report 40) International Commission on Radiation Units and Measurements, BethesdaGoogle Scholar
  31. 31.
    ICRU (1993) Stopping powers and ranges for protons and alpha particles (Report 49) International Commission on Radiation Units and Measurements, BethesdaGoogle Scholar
  32. 32.
    Ziebell AL et al (2008) A cylindrical silicon-on-insulator microdosimeter: charge collection characteristics. IEEE Trans Nucl Sci 55(6):3414–3420CrossRefGoogle Scholar
  33. 33.
    Lee JYM (1981) Reduction of leakage current of large-area high-resistivity silicon p-i-n photodiodes for detection at 1.06 µm. Electron Devices. IEEE Trans on 28(4):412–416CrossRefGoogle Scholar
  34. 34.
    Tran L, Chartier L (2014) Preliminary Characterisation of Fourth Generation Microdosimeter from the University of Florida. Centre for Medical Radiation Physics at the University of Wollongong, WollongongGoogle Scholar
  35. 35.
    Cornelius I et al (2002) Ion beam induced charge characterisation of a silicon microdosimeter using a heavy ion microprobe. Nucl Instrum Methods Phys Res B 190(1–4):335–338CrossRefGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2017

Authors and Affiliations

  • Anthony Mazza
    • 1
    • 2
  • Wayne Newhauser
    • 1
    • 2
  • Stephen Pittman
    • 1
  • Andrew Halloran
    • 1
  • Paul Maggi
    • 1
  • Linh Tran
    • 4
  • Brent Gila
    • 3
  • Anatoly Rosenfeld
    • 4
  • James Ziegler
    • 5
  1. 1.Medical Physics and Health Physics Program, Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA
  2. 2.Department of PhysicsMary Bird Perkins Cancer CenterBaton RougeUSA
  3. 3.Nanoscale Research FacilityUniversity of FloridaGainesvilleUSA
  4. 4.Centre for Medical Radiation PhysicsUniversity of WollongongWollongongAustralia
  5. 5.United States Naval AcademyAnnapolisUSA

Personalised recommendations