Advertisement

Numerical model for healthy and injured ankle ligaments

  • Antonella Forestiero
  • Emanuele Luigi Carniel
  • Chiara Giulia FontanellaEmail author
  • Arturo Nicola Natali
Scientific Paper
  • 195 Downloads

Abstract

The aim of this work is to provide a computational tool for the investigation of ankle mechanics under different loading conditions. The attention is focused on the biomechanical role of ankle ligaments that are fundamental for joints stability. A finite element model of the human foot is developed starting from Computed Tomography and Magnetic Resonance Imaging, using particular attention to the definition of ankle ligaments. A refined fiber-reinforced visco-hyperelastic constitutive model is assumed to characterize the mechanical response of ligaments. Numerical analyses that interpret anterior drawer and the talar tilt tests reported in literature are performed. The numerical results are in agreement with the range of values obtained by experimental tests confirming the accuracy of the procedure adopted. The increase of the ankle range of motion after some ligaments rupture is also evaluated, leading to the capability of the numerical models to interpret the damage conditions. The developed computational model provides a tool for the investigation of foot and ankle functionality in terms of stress–strain of the tissues and in terms of ankle motion, considering different types of damage to ankle ligaments.

Keywords

Foot mechanics Ankle ligaments Constitutive model Numerical model 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Shin J, Yue N, Untaroiu CD (2012) A finite element model of the foot and ankle for automotive impact applications. Ann Biomed Eng 40(12):2519–2531CrossRefPubMedGoogle Scholar
  2. 2.
    Scott AL (2002) Assessment of the injured ankle in the athlete. J Athl Train 37(4):406–412Google Scholar
  3. 3.
    Corazza F, O’ Connor JJ, Leardini A, Castelli VP (2003) Ligament fibre recruitment and forces for the anterior drawer test at the human ankle joint. J Biomech 36:363–372CrossRefPubMedGoogle Scholar
  4. 4.
    Rosenbaum D, Becker HP, Wilke HJ, Claes LE (1998) Tenodeses destroy the kinematic coupling of the ankle joint complex. A three dimensional in vitro analysis of joint movement. J Bone Jt Surg Br 80(1):162–168CrossRefGoogle Scholar
  5. 5.
    Kovaleski JE, Gurchiek LR, Heitman RJ, Hollis JM, Pearsall AW (1999) Instrumented measurement of anterior-posterior and inversion-eversion laxity of the normal ankle joint complex. Foot Ankle Int 20:808–814CrossRefPubMedGoogle Scholar
  6. 6.
    Kovaleski JE, Hollis MJ, Norrell PM, Vicory JR, Heitman RJ (2004) Sex and competitive status in ankle inversion-eversion range of motion of college students. Percept Mot Skills 99:1257–1262PubMedGoogle Scholar
  7. 7.
    Lapointe SJ, Siegler S, Hillstrom H, Nobilini RR, Mlodzienski A, Techner L (1997) Changes in the flexibility characteristics of the ankle complex due to damage to the lateral collateral ligaments: an in vitro and in vivo study. J Orthop Res 15:331–341CrossRefPubMedGoogle Scholar
  8. 8.
    Prisk VR, Imhauser CW, O’Loughlin PF, Kennedy JG (2010) Lateral ligament repair and reconstruction restore neither contact mechanics of the ankle joint nor motion patterns of the hindfoot. J Bone Jt Surg Am 92 (14):2375–2386.CrossRefGoogle Scholar
  9. 9.
    Siegler S, Chen J, Schneck AD (1988) The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints – Part I: kinematics. J Biomech Eng 110:364–373CrossRefPubMedGoogle Scholar
  10. 10.
    Ringleb SI, Dhakal A, Anderson CD, Bawab S, Paranjape R (2011) Effects of lateral ligament sectioning on the stability of the ankle and subtalar joint. J Orthop Res 29:1459–1464CrossRefPubMedGoogle Scholar
  11. 11.
    Kovaleski JE, Hollis JM, Heitman RJ, Gurchiek LR, Pearsall AW (2002) Assessment of ankle-subtalar joint complex laxity using an instrumented ankle arthrometer: an experimental cadaveric investigation. J Athl Train 37(4):467–474PubMedPubMedCentralGoogle Scholar
  12. 12.
    Schwarz NA, Kovaleski JE, Heitman RJ, Gurchiek LR, Gubler-Hanna C (2011) Arthrometric measurement of ankle complex motion: normative values. J Athl Train 46(2):126–132CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hubbard TJ (2008) Ligament laxity following inversion injury with and without chronic ankle instability. Foot Ankle Int 29(3):305–311CrossRefPubMedGoogle Scholar
  14. 14.
    Hubbard TJ, Kramer LC, Denegar CR, Hertel J (2007) Contributing factors to chronic ankle instability. Foot Ankle Int 28(3):343–354CrossRefPubMedGoogle Scholar
  15. 15.
    Hubbard TJ, Kaminski TW, Vander Griend RA, Kovaleski JE (2004) Quantitative assessment of mechanical laxity in the functionally unstable ankle. Med Sci Sports Exerc 36(5):760–766CrossRefPubMedGoogle Scholar
  16. 16.
    Vassenon T, Gao Y, Phisitkul P (2012) Comparison of two manual tests for ankle laxity due to rupture of the lateral ankle ligaments. Iowa Orthop J 32:9–16Google Scholar
  17. 17.
    Docherty CL, Rybak-Webb K (2009) Reliability of the anterior drawer and talar tilt tests using the LigMaster joint anthrometer. J Sport Rehabil 18:1–9CrossRefGoogle Scholar
  18. 18.
    Disanto TJ, Swanik B, Swanik KA, Straub SJ, Needle AR (2011) Concurrent validity of the anterior drawer test and an arthrometer in evaluating ankle laxity. Athl Train Sports Healthy Care 3:15–20Google Scholar
  19. 19.
    Pearsall AW, Kovaleski JE, Heitman RJ, Gurchiek LR, Hollis JM (2006) The relationships between instrumented measurements of ankle and knee ligamentous laxity and generalized joint laxity. J Sports Med Phys Fit 46(1):104–110Google Scholar
  20. 20.
    McKeon PO, Paolini G, Ingersoll CD, Kerrigan DC, Saliba EN, Bennettl BC, Hertel J (2009) Effects of balance training on gait parameters in patients with chronic ankle instability: a randomized controlled trial. Clin Rehabil 23(7):609–621CrossRefPubMedGoogle Scholar
  21. 21.
    Wilkerson GB, Kovaleski JE, Meyer M, Stawiz C (2005) Effects of the subtalar sling ankle taping technique on combined talocrural-subtalar joint motions. Foot Ankle Int 26(3):239–246CrossRefPubMedGoogle Scholar
  22. 22.
    Choe JR, Park SB, Ryu SH, Kim SH, Lee SB (2009) Landing impact analysis of sports shoes using 3-D coupled foot-shoe finite element model. J Mech Sci Technol 23:2583–2591CrossRefGoogle Scholar
  23. 23.
    Shin J, Yue N, Untaroiu CD (2013) Biomechanical and injury response of human foot and ankle under complex loading. J Biomech Eng 135:101008CrossRefPubMedGoogle Scholar
  24. 24.
    Cheung JTM, Nigg BM (2007) Clinical applications of computational simulation of foot and ankle. Sport Orthop Traumatol 23:264–271CrossRefGoogle Scholar
  25. 25.
    Cheung JTM, Zhang M, Leung AKL, Fan YB (2005) Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. J Biomech 71:1045–1054CrossRefGoogle Scholar
  26. 26.
    Wang KTD, Wang C, Wang X, Liu A, Nester CJ, Howard D (2009) An in vivo experimental validation of a computational model of human foot. J Bionic Eng 6:387–397CrossRefGoogle Scholar
  27. 27.
    Yu J, Cheung JTM, Fan Y, Zhang Y, Leung AKL, Zhang M (2008) Development of a finite element model of female foot for high heeled shoe design. Clin Biomech 23:S31–S38CrossRefGoogle Scholar
  28. 28.
    Forestiero A, Carniel EL, Venturato C, Natali AN (2013) Investigation of the biomechanical behaviour of hindfoot ligaments. Proc Inst Mech Eng Part H 227(6):683–692CrossRefGoogle Scholar
  29. 29.
    Natali AN, Fontanella CG, Carniel EL (2012) Constitutive formulation and numerical analysis of the heel pad region. Comput Methods Biomech Biomed Eng 15(4):401–409.CrossRefGoogle Scholar
  30. 30.
    Fontanella CG, Matteoli S, Carniel EL, Wilhjel JE, Virga A, Corvi A, Natali AN (2012) Investigation on the load-displacement curves of a human healthy heel pad: in vivo compression data compared to numerical results. Med Eng Phys 34:1253–1259CrossRefPubMedGoogle Scholar
  31. 31.
    do Carmo CCM, de Almeida Melão LIF, de Lemos Weber MFV, Trudell D, Resnick D (2008) Anatomical features of plantar aponeurosis: cadaveric study using ultrasonography and magnetic resonance imaging. Skelet Radiol 37:929–935CrossRefGoogle Scholar
  32. 32.
    Pavan PG, Stecco C, Darwish S, Natali AN, De Caro R (2011) Investigation of the mechanical properties of the plantar aponeurosis. Surg Radiol Anat 33:905–911CrossRefPubMedGoogle Scholar
  33. 33.
    Anderson DD, Goldsworthy JK, Li W et al (2007) Physical validation of a patient-specific contact finite element model of the ankle. J Biomech 40(8):1662–1669CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fontanella CG, Carniel EL, Forestiero A, Natali AN (2014) Investigation of the mechanical behaviour of the foot skin. Skin Res Technol 20(4):445–452CrossRefPubMedGoogle Scholar
  35. 35.
    Venturato C, Pavan PG, Forestiero A, Carniel EL, Natali AN (2014) Investigation of the biomechanical behaviour of articular cartilage in hindfoot joints. Acta Bioeng Biomech 16(2):57–65PubMedGoogle Scholar
  36. 36.
    Forestiero A, Carniel EL, Natali AN (2014) Biomechanical behaviour of ankle ligaments: constitutive formulation and numerical modelling. Comput Methods Biomech Biomed 14(4):395–404CrossRefGoogle Scholar
  37. 37.
    Natali AN, Pavan PG, Carniel EL, Lucisano ME, Taglialavoro G (2005) Anisotropic elasto-damage constitutive model for the biomechanical analysis of tendons. Med Eng Phys 27:209–214CrossRefPubMedGoogle Scholar
  38. 38.
    Goske S, Erdemir A, Petre M, Budhabhatti S, Cavanagh PR (2006) Reduction of plantar heel pressures: insole design using finite element analysis. J Biomech 39:2363–2370CrossRefPubMedGoogle Scholar
  39. 39.
    Cheung JTM, Zhang M, Leunga AKL, Fan JB (2005) Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. J Biomech 38:1045–1054CrossRefPubMedGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2017

Authors and Affiliations

  • Antonella Forestiero
    • 1
  • Emanuele Luigi Carniel
    • 1
    • 2
  • Chiara Giulia Fontanella
    • 1
    • 3
    Email author
  • Arturo Nicola Natali
    • 1
    • 2
  1. 1.Centre for Mechanics of Biological MaterialsUniversity of PadovaPaduaItaly
  2. 2.Department of Industrial EngineeringUniversity of PadovaPaduaItaly
  3. 3.Department of Biomedical SciencesUniversity of PadovaPaduaItaly

Personalised recommendations