Comparison of dosimetry between PET/CT and PET alone using 11C-ITMM

  • Kimiteru ItoEmail author
  • Muneyuki Sakata
  • Keiichi Oda
  • Kei Wagatsuma
  • Jun Toyohara
  • Kenji Ishibashi
  • Kenji Ishii
  • Kiichi Ishiwata
Scientific Paper


We used a new tracer, N-[4-[6-(isopropylamino) pyrimidin-4-yl]-1,3-thiazol-2-yl]-4-11C-methoxy-N-methylbenzamide (11C-ITMM), to compare radiation doses from positron emission tomography (PET)/computed tomography (CT) with previously published doses from PET alone. Twelve healthy volunteers [six males (mean age ± SD, 27.7 ± 6.7 years) and six females (31.8 ± 14.5 years)] in 12 examinations were recruited. Dose estimations from PET/CT were compared with those from PET alone. Regions of interest (ROIs) in PET/CT were delineated on the basis of low-dose CT (LD-CT) images acquired during PET/CT. Internal and external radiation doses were estimated using OLINDA/EXM 1.0 and CT-Expo software. The effective dose (ED) for 11C-ITMM calculated from PET/CT was estimated to be 4.7 ± 0.5 μSv/MBq for the male subjects and 4.1 ± 0.7 μSv/MBq for the female subjects. The mean ED for 11C-ITMM calculated from PET alone in a previous report was estimated to be 4.6 ± 0.3 μSv/MBq (males, n = 3). The ED values for 11C-ITMM calculated from PET/CT in the male subjects were almost identical to those from PET alone. The absorbed doses (ADs) of the gallbladder, stomach, red bone marrow, and spleen calculated from PET/CT were significantly different from those calculated from PET alone. The EDs of 11C-ITMM calculated from PET/CT were almost identical to those calculated from PET alone. The ADs in several organs calculated from PET/CT differed from those from PET alone. LD-CT images acquired during PET/CT may facilitate organ identification.


Radiation dosimetry PET/CT PET Biodistribution 11C-ITMM 



No potential conflicts of interest were disclosed. This work was supported by a Grant-in-Aid for Scientific Research (B), No. 24390298, from The Japan Society for the Promotion of Science. We thank Kumpei Hayashi, Airin Oonishi, and Hatsumi Endo for their technical assistance.


  1. 1.
    Lassmann M, Chiesa C, Flux G, Bardies M (2011) EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. Eur J Nucl Med Mol Imaging 38(1):192–200. doi: 10.1007/s00259-010-1549-3 CrossRefPubMedGoogle Scholar
  2. 2.
    van der Aart J, Hallett WA, Rabiner EA, Passchier J, Comley RA (2012) Radiation dose estimates for carbon-11-labelled PET tracers. Nucl Med Biol 39(2):305–314. doi: 10.1016/j.nucmedbio.2011.08.005 CrossRefPubMedGoogle Scholar
  3. 3.
    Zanotti-Fregonara P, Innis RB (2012) Suggested pathway to assess radiation safety of 11C-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging 39(3):544–547. doi: 10.1007/s00259-011-2005-8 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zanotti-Fregonara P, Lammertsma AA, Innis RB (2013) Suggested pathway to assess radiation safety of (1)(8)F-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging 40(11):1781–1783. doi: 10.1007/s00259-013-2512-x CrossRefPubMedGoogle Scholar
  5. 5.
    Sakata M, Oda K, Toyohara J, Ishii K, Nariai T, Ishiwata K (2013) Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies. Ann Nucl Med 27(3):285–296. doi: 10.1007/s12149-013-0685-9 CrossRefPubMedGoogle Scholar
  6. 6.
    Townsend DW, Carney JP, Yap JT, Hall NC (2004) PET/CT today and tomorrow. J Nucl Med Off Publ Soc Nucl Med 45(Suppl 1):4s–14sGoogle Scholar
  7. 7.
    Nakamoto Y, Osman M, Cohade C, Marshall LT, Links JM, Kohlmyer S, Wahl RL (2002) PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med Off Publi Soc Nucl Med 43(9):1137–1143Google Scholar
  8. 8.
    Wu TH, Huang YH, Lee JJ, Wang SY, Wang SC, Su CT, Chen LK, Chu TC (2004) Radiation exposure during transmission measurements: comparison between CT- and germanium-based techniques with a current PET scanner. Eur J Nucl Med Mol Imaging 31(1):38–43. doi: 10.1007/s00259-003-1327-6 CrossRefPubMedGoogle Scholar
  9. 9.
    Fabbri C, Galassi R, Moretti A, Sintuzzi E, Mautone V, Sarti G, Strigari L, Benassi M, Matteucci F (2014) Radiation dosimetry of 18F-fluorocholine PET/CT studies in prostate cancer patients. Physica medica: pM: an international journal devoted to the applications of physics to medicine and biology. Off J Ital Assoc Biomed Phys (AIFB) 30(3):346–351. doi: 10.1016/j.ejmp.2013.10.007 Google Scholar
  10. 10.
    Bockisch A, Beyer T, Antoch G, Freudenberg LS, Kuhl H, Debatin JF, Muller SP (2004) Positron emission tomography/computed tomography–imaging protocols, artifacts, and pitfalls. Mol Imaging Biol MIB Off Publ Acad Mol Imaging 6(4):188–199. doi: 10.1016/j.mibio.2004.04.006 CrossRefGoogle Scholar
  11. 11.
    Toyohara J, Sakata M, Oda K, Ishii K, Ito K, Hiura M, Fujinaga M, Yamasaki T, Zhang MR, Ishiwata K (2013) Initial human PET studies of metabotropic glutamate receptor type 1 ligand 11C-ITMM. J Nucl Med Off Publ Soc Nucl Med 54(8):1302–1307. doi: 10.2967/jnumed.113.119891 Google Scholar
  12. 12.
    Fujinaga M, Yamasaki T, Yui J, Hatori A, Xie L, Kawamura K, Asagawa C, Kumata K, Yoshida Y, Ogawa M, Nengaki N, Fukumura T, Zhang MR (2012) Synthesis and evaluation of novel radioligands for positron emission tomography imaging of metabotropic glutamate receptor subtype 1 (mGluR1) in rodent brain. J Med Chem 55(5):2342–2352. doi: 10.1021/jm201590g CrossRefPubMedGoogle Scholar
  13. 13.
    Toyohara J, Sakata M, Fujinaga M, Yamasaki T, Oda K, Ishii K, Zhang MR, Moriguchi Jeckel CM, Ishiwata K (2013) Preclinical and the first clinical studies on [11C]ITMM for mapping metabotropic glutamate receptor subtype 1 by positron emission tomography. Nucl Med Biol 40(2):214–220. doi: 10.1016/j.nucmedbio.2012.11.008 CrossRefPubMedGoogle Scholar
  14. 14.
    Fujiwara T, Watanuki S, Yamamoto S, Miyake M, Seo S, Itoh M, Ishii K, Orihara H, Fukuda H, Satoh T, Kitamura K, Tanaka K, Takahashi S (1997) Performance evaluation of a large axial field-of-view PET scanner: sET-2400W. Ann Nucl Med 11(4):307–313CrossRefPubMedGoogle Scholar
  15. 15.
    Stamm G, Nagel HD (2002) CT-expo—a novel program for dose evaluation in CT. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 174(12):1570–1576. doi: 10.1055/s-2002-35937 CrossRefPubMedGoogle Scholar
  16. 16.
    Kortesniemi M, Salli E, Seuri R (2012) Organ dose calculation in CT based on scout image data and automatic image registration. Acta Radiologica 53(8):908–913. doi: 10.1258/ar.2012.110611 CrossRefPubMedGoogle Scholar
  17. 17.
    Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med Off Publ Soc Nucl Med 46(6):1023–1027Google Scholar
  18. 18.
    Sievert RM, Failla G (1990) Recommendations of the international commission on radiological protection. Ann ICRP 21:1–201Google Scholar
  19. 19.
    Senthamizhchelvan S, Bravo PE, Esaias C, Lodge MA, Merrill J, Hobbs RF, Sgouros G, Bengel FM (2010) Human biodistribution and radiation dosimetry of 82Rb. J Nucl Med Off Publ Soc Nucl Med 51(10):1592–1599. doi: 10.2967/jnumed.110.077669 Google Scholar
  20. 20.
    Doss M, Kolb HC, Walsh JC, Mocharla V, Fan H, Chaudhary A, Zhu Z, Alpaugh RK, Lango MN, Yu JQ (2013) Biodistribution and radiation dosimetry of 18F-CP-18, a potential apoptosis imaging agent, as determined from PET/CT scans in healthy volunteers. J Nucl Med Off Publ Soc Nucl Med 54(12):2087–2092. doi: 10.2967/jnumed.113.119800 Google Scholar
  21. 21.
    Postnov A, Froklage FE, van Lingen A, Reijneveld JC, Hendrikse NH, Windhorst AD, Schuit RC, Eriksson J, Lammertsma AA, Huisman MC (2013) Radiation dose of the P-glycoprotein tracer 11C-laniquidar. J Nucl Med Off Publ Soc Nucl Med 54(12):2101–2103. doi: 10.2967/jnumed.113.120857 Google Scholar
  22. 22.
    Challapalli A, Kenny LM, Hallett WA, Kozlowski K, Tomasi G, Gudi M, Al-Nahhas A, Coombes RC, Aboagye EO (2013) 18F-ICMT-11, a caspase-3-specific PET tracer for apoptosis: biodistribution and radiation dosimetry. J Nucl Med Off Publ Soc Nucl Med 54(9):1551–1556. doi: 10.2967/jnumed.112.118760 Google Scholar
  23. 23.
    Sandstrom M, Velikyan I, Garske-Roman U, Sorensen J, Eriksson B, Granberg D, Lundqvist H, Sundin A, Lubberink M (2013) Comparative biodistribution and radiation dosimetry of 68 Ga-DOTATOC and 68 Ga-DOTATATE in patients with neuroendocrine tumors. J Nucl Med Off Publ Soc Nucl Med 54(10):1755–1759. doi: 10.2967/jnumed.113.120600 Google Scholar
  24. 24.
    Smolarz K, Krause BJ, Graner FP, Wagner FM, Wester HJ, Sell T, Bacher-Stier C, Fels L, Dinkelborg L, Schwaiger M (2013) Biodistribution and radiation dosimetry in healthy volunteers of a novel tumour-specific probe for PET/CT imaging: bAY 85-8050. Eur J Nucl Med Mol Imaging 40(12):1861–1868. doi: 10.1007/s00259-013-2502-z CrossRefPubMedGoogle Scholar
  25. 25.
    Ahmad R, Koole M, Evens N, Serdons K, Verbruggen A, Bormans G, Van Laere K (2013) Whole-body biodistribution and radiation dosimetry of the cannabinoid type 2 receptor ligand [11C]-NE40 in healthy subjects. Mol Imaging Biol MIB Off Publ Acad Mol Imaging 15(4):384–390. doi: 10.1007/s11307-013-0626-y CrossRefGoogle Scholar
  26. 26.
    Boellaard R, van Lingen A, Lammertsma AA (2001) Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. J Nucl Med Off Publ Soc Nucl Med 42(5):808–817Google Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2015

Authors and Affiliations

  • Kimiteru Ito
    • 1
    • 2
    Email author
  • Muneyuki Sakata
    • 2
  • Keiichi Oda
    • 2
    • 3
  • Kei Wagatsuma
    • 2
  • Jun Toyohara
    • 2
  • Kenji Ishibashi
    • 2
  • Kenji Ishii
    • 2
  • Kiichi Ishiwata
    • 2
  1. 1.Department of Diagnostic RadiologyTokyo Metropolitan Geriatric Hospital and Institute of GerontologyTokyoJapan
  2. 2.Research Team for NeuroimagingTokyo Metropolitan Institute of GerontologyTokyoJapan
  3. 3.Department of Radiological Technology, Faculty of Health SciencesHokkaido University of ScienceSapporoJapan

Personalised recommendations