Advertisement

Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study

  • Min Guo
  • Derek Abbott
  • Minhua LuEmail author
  • Huafeng Liu
Scientific Note
  • 227 Downloads

Abstract

Shear wave propagation speed has been regarded as an attractive indicator for quantitatively measuring the intrinsic mechanical properties of soft tissues. While most existing techniques use acoustic radiation force (ARF) excitation with focal spot region based on linear array transducers, we try to employ a special ARF with a focal line region and apply it to viscoelastic materials to create shear waves. First, a two-dimensional capacitive micromachined ultrasonic transducer with \(64 \times 128\) fully controllable elements is realised and simulated to generate this special ARF. Then three-dimensional finite element models are developed to simulate the resulting shear wave propagation through tissue phantom materials. Three different phantoms are explored in our simulation study using: (a) an isotropic viscoelastic medium, (b) within a cylindrical inclusion, and (c) a transverse isotropic viscoelastic medium. For each phantom, the ARF creates a quasi-plane shear wave which has a preferential propagation direction perpendicular to the focal line excitation. The propagation of the quasi-plane shear wave is investigated and then used to reconstruct shear moduli sequentially after the estimation of shear wave speed. In the phantom with a transverse isotropic viscoelastic medium, the anisotropy results in maximum speed parallel to the fiber direction and minimum speed perpendicular to the fiber direction. The simulation results show that the line excitation extends the displacement field to obtain a large imaging field in comparison with spot excitation, and demonstrate its potential usage in measuring the mechanical properties of anisotropic tissues.

Keywords

Elastography Acoustic radiation force Shear wave Finite element 2D CMUT array 

Notes

Acknowledgments

This work was supported in part by the Shenzhen Foundational Research Project (SGLH20131010110119871, GJHZ20140415152115754), and the National Natural Science Foundation of China (61471243).

References

  1. 1.
    Varghese T (2009) Quasi-static ultrasound elastography. Ultrasound Clin 4(3):323–338CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Doherty J, Trahey G, Nightingale K, Palmeri M (2013) Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr 60(4):685–701CrossRefGoogle Scholar
  3. 3.
    Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13(2):111–134CrossRefPubMedGoogle Scholar
  4. 4.
    Grajo JR, Barr RG (2012) Compression elasticity imaging of the breast: an overview. Appl Radiol 41(10):18–23Google Scholar
  5. 5.
    Skovoroda A, Emelianov S, O’Donnell M (1995) Tissue elasticity reconstruction based on ultrasonic displacement and strain images. IEEE Trans Ultrason Ferroelectr 42(4):747–765CrossRefGoogle Scholar
  6. 6.
    Palmeri ML, Wang MH, Rouze NC et al (2011) Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease. J Hepatol 55(3):666–672CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sebag F, Vaillant-Lombard J et al (2010) Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocr Metab 95(12):5281–5288CrossRefPubMedGoogle Scholar
  8. 8.
    Kallel F, Bertrand M (1996) Tissue elasticity reconstruction using linear perturbation method. IEEE Trans Med Imaging 15(3):299–313CrossRefPubMedGoogle Scholar
  9. 9.
    Baldewsing RA, Danilouchkine MG et al (2008) An inverse method for imaging the local elasticity of atherosclerotic coronary plaques. IEEE Trans Inf Technol Biomed 12(3):277–289CrossRefPubMedGoogle Scholar
  10. 10.
    Hoskins PR, Svensson W (2012) Current state of ultrasound elastography. Ultrasound 20(1):3–4CrossRefGoogle Scholar
  11. 11.
    Sandrin L, Tanter M, Catheline S, Fink M (2002) Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr 49(4):426–435CrossRefGoogle Scholar
  12. 12.
    Sandrin L, Tanter M, Gennisson JL, Catheline S, Fink M (2002) Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr 49(4):436–446CrossRefGoogle Scholar
  13. 13.
    Sandrin L, Fourquet B et al (2003) Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 29(12):1705–1713CrossRefPubMedGoogle Scholar
  14. 14.
    Sarvazyan AP, Rudenko OV et al (1998) Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 24(9):1419–1435CrossRefPubMedGoogle Scholar
  15. 15.
    Nightingale K, McAleavey S, Trahey G (2003) Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med Biol 29(12):1715–1723CrossRefPubMedGoogle Scholar
  16. 16.
    Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr 51(4):396–409CrossRefGoogle Scholar
  17. 17.
    McAleavey SA, Menon M, Orszulak J (2007) Shear-modulus estimation by application of spatially-modulated impulsive acoustic radiation force. Ultrason Imaging 29(2):87–104CrossRefPubMedGoogle Scholar
  18. 18.
    Chen S, Fatemi M, Greenleaf JF (2004) Quantifying elasticity and viscosity from measurement of shear wave speed dispersion. J Acoust Soc Am 115(6):2781–2785CrossRefPubMedGoogle Scholar
  19. 19.
    Cheng Y, Li R, Li S et al (2012) Shear wave elasticity imaging based on acoustic radiation force and optical detection. Ultrasound Med Biol 38(9):1637–1645CrossRefPubMedGoogle Scholar
  20. 20.
    Deffeux T, Montaldo G, Tanter M, Fink M (2009) Shear wave spectroscopy for in vivo quantification of human soft tissues viscoelasticity. IEEE Trans Med Imaging 28(3):313–322CrossRefGoogle Scholar
  21. 21.
    Song P, Zhao H, Manduca A et al (2012) Comb-push ultrasound shear elastography (cuse): a novel method for two-dimensional shear elasticity imaging of soft tissues. IEEE Trans Med Imaging 31(9):1821–1832CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Song P, Urban M, Manduca A et al (2013) Comb-push ultrasound shear elastography (cuse) with various ultrasound push beams. IEEE Trans Med Imaging 32(8):1435–1447CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nabavizadeh A, Song P, Chen S et al (2015) Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams. IEEE Trans Ultrason Ferroelectr 62(4):647–662CrossRefGoogle Scholar
  24. 24.
    Gennisson JL, Catheline S, Chaffai S, Fink M (2003) Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles. J Acoust Soc Am 114(1):536–541CrossRefPubMedGoogle Scholar
  25. 25.
    McLaughlin JR, Renzi D, Yoon JR (2007) Anisotropy reconstruction from wave fronts in transversely isotropic acoustic media. SIAM J Appl Math 68(1):24–42CrossRefGoogle Scholar
  26. 26.
    Gennisson JL, Deffeux T, Mace E et al (2010) Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 36(5):789–801CrossRefPubMedGoogle Scholar
  27. 27.
    Guo M, Lu M, Zhang H, Liu H, Zhang YT (2014) A rod-like acoustic radiation force in ultrasound-based elastography: a simulation study. In: The international conference on health informatics, Springer, pp 148–151Google Scholar
  28. 28.
    Lee KH, Szajewski BA, Hah Z et al (2012) Modeling shear waves through a viscoelastic medium induced by acoustic radiation force. Int J Numer Method Biomed Eng 28(6–7):678–696CrossRefPubMedGoogle Scholar
  29. 29.
    Vappou J, Maleke C, Konofagou EE (2009) Quantitative viscoelastic parameters measured by harmonic motion imaging. Phys Med Biol 54(11):3579–3594CrossRefPubMedGoogle Scholar
  30. 30.
    Palmeri ML, Sharma AC, Bouchard RR et al (2005) A finite-element method model of soft tissue response to impulsive acoustic radiation force. IEEE Trans Ultrason Ferroelectr 52(10):1699–1712CrossRefGoogle Scholar
  31. 31.
    Bercoff J, Tanter M, Muller M, Fink M (2004) The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force. IEEE Trans Ultrason Ferroelectr 51(11):1523–1536CrossRefGoogle Scholar
  32. 32.
    Levinson SF (1987) Ultrasound propagation in anisotropic soft tissues: the application of linear elastic theory. J Biomech 20(3):251–260CrossRefPubMedGoogle Scholar
  33. 33.
    Rubin D, Krempl E, Lai WM (2012) Introduction to continuum mechanics. Butterworth-Heinemann, WalthamGoogle Scholar
  34. 34.
    Wells PN, Liang HD (2011) Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 8(64):1521–1549CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bower AF (2009) Applied mechanics of solids. CRC Press, Boca RatonGoogle Scholar
  36. 36.
    Zimmer J, Cost JR (1970) Determination of the elastic constants of a unidirectional fiber composite using ultrasonic velocity measurements. J Acoust Soc Am 47(3B):795–803CrossRefGoogle Scholar
  37. 37.
    Torr G (1984) The acoustic radiation force. Am J Phys 52(5):402–408CrossRefGoogle Scholar
  38. 38.
    Parker KJ (1983) Ultrasonic attenuation and absorption in liver tissue. Ultrasound Med Biol 9(4):363–369CrossRefPubMedGoogle Scholar
  39. 39.
    Kim BH, Kim Y, Lee S et al. (2012) Design and test of a fully controllable 64\(\times\)128 2-d cmut array integrated with reconfigurable frontend asics for volumetric ultrasound imaging. In: 2012 IEEE international ultrasonics symposium (IUS), pp 77–80Google Scholar
  40. 40.
    Jensen JA (1996) Field: A program for simulating ultrasound systems. In: 10th Nordicbaltic conference on biomedical imaging, vol 4, Supplement 1, Part 1: 351–353Google Scholar
  41. 41.
    Urban M, Greenleaf J (2009) A Kramers-Kronig-based quality factor for shear wave propagation in soft tissue. Phys Med Biol 54(19):5919CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Fung Y (1965) Foundations of solid mechanics. Prentice-Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and Engineering, Zhejiang UniversityHangzhouChina
  2. 2.School of Electrical and Electronic EngineeringThe University of AdelaideAdelaideAustralia
  3. 3.Department of Biomedical Engineering, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of MedicineShenzhen UniversityShenzhenChina

Personalised recommendations