Mobile healthcare applications: system design review, critical issues and challenges

  • Mirza Mansoor BaigEmail author
  • Hamid GholamHosseini
  • Martin J. Connolly


Mobile phones are becoming increasingly important in monitoring and delivery of healthcare interventions. They are often considered as pocket computers, due to their advanced computing features, enhanced preferences and diverse capabilities. Their sophisticated sensors and complex software applications make the mobile healthcare (m-health) based applications more feasible and innovative. In a number of scenarios user-friendliness, convenience and effectiveness of these systems have been acknowledged by both patients as well as healthcare providers. M-health technology employs advanced concepts and techniques from multidisciplinary fields of electrical engineering, computer science, biomedical engineering and medicine which benefit the innovations of these fields towards healthcare systems. This paper deals with two important aspects of current mobile phone based sensor applications in healthcare. Firstly, critical review of advanced applications such as; vital sign monitoring, blood glucose monitoring and in-built camera based smartphone sensor applications. Secondly, investigating challenges and critical issues related to the use of smartphones in healthcare including; reliability, efficiency, mobile phone platform variability, cost effectiveness, energy usage, user interface, quality of medical data, and security and privacy. It was found that the mobile based applications have been widely developed in recent years with fast growing deployment by healthcare professionals and patients. However, despite the advantages of smartphones in patient monitoring, education, and management there are some critical issues and challenges related to security and privacy of data, acceptability, reliability and cost that need to be addressed.


Smartphone based applications Healthcare systems Mobile healthcare applications m-Health applications Mobile monitoring and mobile healthcare technology 


Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Wellens HJJ, Gorgels AP (2004) The electrocardiogram 102 years after Einthoven. Circulation 109(5):562–564PubMedGoogle Scholar
  2. 2.
    Kwon S, Lee J, Chung GS, Park KS (2011) Validation of heart rate extraction through an iPhone accelerometer. Paper presented at the Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, Boston, USAGoogle Scholar
  3. 3.
    Oresko JJ, Jin Z, Cheng J, Huang S, Sun Y, Duschl H, Cheng AC (2010) A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing. Inf Technol Biomed IEEE Trans 14(3):734–740Google Scholar
  4. 4.
    Worringham C, Rojek A, Stewart I (2011) Development and feasibility of a smartphone, ECG and GPS based system for remotely monitoring exercise in cardiac rehabilitation. PLoS ONE 6(2):e14669PubMedCentralPubMedGoogle Scholar
  5. 5.
    Chiu P, Lee T, Cheng J, Yeung ST (2011) Health guard system with emergency call based on smartphone. Paper presented at the IET International Communication Conference on Wireless Mobile and Computing (CCWMC 2011), Shanghai, ChinaGoogle Scholar
  6. 6.
    Sikka N, Carlin KN, Pines J, Pirri M, Strauss R, Rahimi F (2012) The use of mobile phones for acute wound care: attitudes and opinions of emergency department patients. J Health Commun 17(sup1):37–43PubMedGoogle Scholar
  7. 7.
    Luxton DD, McCann RA, Bush NE, Mishkind MC, Reger GM (2011) mHealth for mental health: integrating smartphone technology in behavioral healthcare. Prof Psychol Res Pract 42(6):505–512Google Scholar
  8. 8.
    Kun LG (2001) Telehealth and the global health network in the 21st century. From homecare to public health informatics. Comput Methods Programs Biomed 64(3):155–167PubMedGoogle Scholar
  9. 9.
    Market Research (2013) mhealth apps and solutions market by connected devices—global trends and forecast to 2018. Market Research, RockvilleGoogle Scholar
  10. 10.
    Reiswig J (2011) Apps: finding the best. J Med Libr Assoc 99(4):326–327PubMedCentralGoogle Scholar
  11. 11.
    Population (2011) Accessed 1 Jan 2013
  12. 12.
    Pal S, Torres DC, Mantione MM (2013) The consumers of health care. In: Pharmacy and the US health care system, p 245Google Scholar
  13. 13.
    Keehan SP, Sisko AM, Truffer CJ, Poisal JA, Cuckler GA, Madison AJ, Lizonitz JM, Smith SD (2011) National health spending projections through 2020: economic recovery and reform drive faster spending growth. Health Aff 30(8):1594–1605Google Scholar
  14. 14.
    Truffer CJ, Keehan S, Smith S, Cylus J, Sisko A, Poisal JA, Lizonitz J, Clemens MK (2010) Health spending projections through 2019: the recession’s impact continues. Health Aff 29(3):522–529Google Scholar
  15. 15.
    Williams J (2004) Wireless in healthcare: a study tracking the use of RFID, wireless sensor solutions, and telemetry technologies by medical device manufacturers and healthcare providers. The FocalPoint Group, USAGoogle Scholar
  16. 16.
    MobileSmith (2014) Mobile apps as tools of cost reduction in healthcare. MobileSmith, vol 39. Mobile Smith Inc, USAGoogle Scholar
  17. 17.
    World Health Organization (2002) Active ageing: a policy framework: a contribution of the second United Nations World Assembly on Ageing. World Health Organization, GenevaGoogle Scholar
  18. 18.
    Kinsella K, Phillips DR (2005) Global aging: the challenge of success. Popul Bull 60:1–40Google Scholar
  19. 19.
    National Institute of Statistics and Economic Studies (NISES) (2011) Population StatisticsGoogle Scholar
  20. 20.
    Helen Bray (2008) National Population Projections. Office for National StatisticsGoogle Scholar
  21. 21.
    Australian Bureau of Statistics (2010) Population by Age and Sex, regions of AustraliaGoogle Scholar
  22. 22.
    Statistics New Zealand (2007) New Zealand’s 65 + Population: A statistical volumeGoogle Scholar
  23. 23.
    Information and Communication Technology (ICT) Statistics (2011) ITU. Accessed 11 Mar 2013
  24. 24.
    Instruments National (2013) Smartphones and tablets for measurement and control. National Instruments, USAGoogle Scholar
  25. 25.
    Shih G, Lakhani P, Nagy P (2010) Is android or iPhone the platform for innovation in imaging informatics. J Digit Imaging 23(1):2–7PubMedCentralPubMedGoogle Scholar
  26. 26.
    Rajan RD (2013) Wireless-Enabled Remote Patient Monitoring Solutions. Medical Design Technology (MDT). Qualcomm Incorporated, USAGoogle Scholar
  27. 27.
    Murdoch TB, Detsky AS (2013) The inevitable application of big data to health care. JAMA 309(13):1351–1352PubMedGoogle Scholar
  28. 28.
    Hung M-C, Jen W-Y (2012) The adoption of mobile health management services: an empirical study. J Med Syst 36(3):1381–1388. doi: 10.1007/s10916-010-9600-2 PubMedGoogle Scholar
  29. 29.
    Jiang Z, Gu X, Chen J, Wang D (2012) Development of an equipment room environment monitoring system based on wireless sensor network and mobile agent. Procedia Eng 29:262–267. doi: 10.1016/j.proeng.2011.12.704 Google Scholar
  30. 30.
    Mosa ASM, Yoo I, Sheets L (2012) A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Mak 12(67):1–31Google Scholar
  31. 31.
    Klasnja P, Pratt W (2012) Healthcare in the pocket: mapping the space of mobile-phone health interventions. J Biomed Inform 45(1):184–198. doi: 10.1016/j.jbi.2011.08.017 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Ullah S, Higgins H, Braem B, Latre B, Blondia C, Moerman I, Saleem S, Rahman Z, Kwak K (2012) A comprehensive survey of wireless body area networks. J Med Syst 36(3):1065–1094. doi: 10.1007/s10916-010-9571-3 PubMedGoogle Scholar
  33. 33.
    Putzer GJ, Park Y (2012) Are physicians likely to adopt emerging mobile technologies? Attitudes and innovation factors affecting smartphone use in the southeastern United States. Perspect Health Inf Manag 9(1b):1–22Google Scholar
  34. 34.
    Pawar P, Jones V, van Beijnum BJF, Hermens H (2012) A framework for the comparison of mobile patient monitoring systems. J Biomed Inform 45(3):544–556PubMedGoogle Scholar
  35. 35.
    Lin C-F (2012) Mobile telemedicine: a survey study. J Med Syst 36(2):511–520. doi: 10.1007/s10916-010-9496-x PubMedGoogle Scholar
  36. 36.
    Al Ameen M, Liu J, Kwak K (2012) Security and privacy issues in wireless sensor networks for healthcare applications. J Med Syst 36(1):93–101. doi: 10.1007/s10916-010-9449-4 PubMedCentralPubMedGoogle Scholar
  37. 37.
    Franklin VL, Greene A, Waller A, Greene SA, Pagliari C (2008) Patients’ engagement with “Sweet Talk”–a text messaging support system for young people with diabetes. J Med Internet Res 10(2):e20PubMedCentralPubMedGoogle Scholar
  38. 38.
    Fjeldsoe BS, Marshall AL, Miller YD (2009) Behavior change interventions delivered by mobile telephone short-message service. Am J Prev Med 36(2):165–173PubMedGoogle Scholar
  39. 39.
    Abroms LC, Ahuja M, Kodl Y, Thaweethai L, Sims J, Winickoff JP, Windsor RA (2012) Text2Quit: results from a pilot test of a personalized, interactive mobile health smoking cessation program. J Health Commun 17(sup1):44–53PubMedCentralPubMedGoogle Scholar
  40. 40.
    Free C, Knight R, Robertson S, Whittaker R, Edwards P, Zhou W, Rodgers A, Cairns J, Kenward MG, Roberts I (2011) Smoking cessation support delivered via mobile phone text messaging (txt2stop): a single-blind, randomised trial. Lancet 378(9785):49–55PubMedCentralPubMedGoogle Scholar
  41. 41.
    Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell phone accelerometers. ACM SIGKDD Explor Newsl 12(2):74–82Google Scholar
  42. 42.
    Moghaddam RF, Moghaddam FF, Cheriet M (2011) The bluenetwork concept. Cornell Univerrsity Library, cite as: Arxiv preprint arXiv:11100436Google Scholar
  43. 43.
    Preuveneers D, Berbers Y (2008) Mobile phones assisting with health self-care: a diabetes case study. In: MobileHCI ‘08 Proceedings of the 10th international conference on human computer interaction with mobile devices and services Amsterdam, The Netherlands, ACM, pp 177–186Google Scholar
  44. 44.
    Bayira MA, Demirbasa M, Eagleb N (2010) Mobility profiler: a framework for discovering mobility profiles of cell phone users. Pervasive Mob Comput 6(4):435–454Google Scholar
  45. 45.
    AirStrip Technologies (2012)) Airstrip Technologies remote continuous vital sign monitoring via the iPhone.
  46. 46.
    Topol EJ (2010) Transforming medicine via digital innovation. Sci Transl Med 2(16):16cm14Google Scholar
  47. 47.
    Ren-Guey L, Kuei-Chien C, Chun-Chieh H, Chwan-Lu T (2007) A mobile care system with alert mechanism. Inf Technol Biomed IEEE Trans 11(5):507–517. doi: 10.1109/titb.2006.888701 Google Scholar
  48. 48.
    Pollonini L, Rajan N, Xu S, Madala S, Dacso C (2012) A novel handheld device for use in remote patient monitoring of heart failure patients—design and preliminary validation on healthy subjects. J Med Syst 36(2):653–659. doi: 10.1007/s10916-010-9531-y PubMedGoogle Scholar
  49. 49.
    Atoui H, Fayn J, Rubel P (2010) A novel neural-network model for deriving standard 12-lead ECGs from serial three-lead ECGs: application to self-care. IEEE Trans Inf Technol Biomed 14(3):883–890PubMedGoogle Scholar
  50. 50.
    Jae Min K, Yoo T, Hee Chan K (2006) A wrist-worn integrated health monitoring instrument with a tele-reporting device for telemedicine and telecare. Instrum Meas IEEE Trans 55(5):1655–1661. doi: 10.1109/tim.2006.881035 Google Scholar
  51. 51.
    Farmer A, Gibson O, Hayton P, Bryden K, Dudley C, Neil A, Tarassenko L (2005) A real-time, mobile phone-based telemedicine system to support young adults with type 1 diabetes. Inform Prim Care 13(3):171–178PubMedGoogle Scholar
  52. 52.
    Tatara N, Årsand E, Hartvigsen G (2010) Patient-user involvement for designing a self-help tool for Type 2 diabetes. In: Therapeutic Strategies A Challenge for User Involvement in Design, Reykjavik, Iceland. Department of Computer Science Aarhus University, pp 53–55Google Scholar
  53. 53.
    Tatara N (2009) Designing mobile patient-centric self-help terminals for people with diabetes. In: MobileHCI ‘09 proceedings of the 11th international conference on human-computer interaction with mobile devices and services bonn, Germany, ACMGoogle Scholar
  54. 54.
    Tatara N, Arsand E, Nilsen H, Hartvigsen G (2009) A review of mobile terminal-based applications for self-management of patients with diabetes. In: International Conference on eHealth, Telemedicine, and Social Medicine, 2009. eTELEMED ‘09. Cancun, IEEE, pp 166–175Google Scholar
  55. 55.
    Årsand E, Tatara N, Østengen G, Hartvigsen G (2010) Mobile phone-based self-management tools for type 2 diabetes: the few touch application. Journal of Diabetes Science and Technology 4(2):328PubMedCentralPubMedGoogle Scholar
  56. 56.
    Cho JH, Lee HC, Lim DJ, Kwon HS, Yoon KH (2009) Mobile communication using a mobile phone with a glucometer for glucose control in type 2 patients with diabetes: as effective as an internet-based glucose monitoring system. J Telemed Telecare 15(2):77–82PubMedGoogle Scholar
  57. 57.
    AgaMatrix (2012) JAZZ-blood glucose monitoring system. Accessed 23 June 2013
  58. 58.
    Leijdekkers P, Gay V (2006) Personal heart monitoring and rehabilitation system using smart phones. In: International Conference on Mobile Business, 2006. ICMB ‘06. Copenhagen. IEEE, pp 29–29Google Scholar
  59. 59.
    Chung WY, Yau CL, Shin KS, Myllyla R (2007) A cell phone based health monitoring system with self analysis processor using wireless sensor network technology. Paper presented at the Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, LyonGoogle Scholar
  60. 60.
    Quero JM, Tarrida CL, Santana J, Ermolov V, Jantunen I, Laine H, Eichholz J (2007) Health care applications based on mobile phone centric smart sensor network. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, Lyon. IEEE, pp 6298–6301Google Scholar
  61. 61.
    BuleSpark (2012) Heart monitor for iPhone. Accessed 23 June 2013
  62. 62.
    Azumia (2012) Instant heart rate. Accessed 23 June 2013
  63. 63.
    Macropinch (2012) Personal heart rate meter. Accessed 23 June 2013
  64. 64.
    Okumura F, Kubota A, Hatori Y, Matsuo K, Hashimoto M, Koike A (2006) A study on biometric authentication based on arm sweep action with acceleration sensor. In: Intelligent Signal Processing and Communications, 2006. ISPACS ‘06. International Symposium on, Yonago. IEEE, pp 219–222Google Scholar
  65. 65.
    Richard WD, Zar D (2009) Ultrasound imaging now possible with a smartphone. Accessed 23 June 2013
  66. 66.
    Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA (2009) Mobile phone based clinical microscopy for global health applications. PLoS ONE 4(7):e6320. doi: 10.1371/journal.pone.0006320 PubMedCentralPubMedGoogle Scholar
  67. 67.
    Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A (2011) Optofluidic fluorescent imaging cytometry on a cell-phone. Anal Chem 83(17):6641–6647. doi: 10.1021/ac201587a PubMedCentralPubMedGoogle Scholar
  68. 68.
    Mitra U, Emken BA, Lee S, Li M, Rozgic V, Thatte G, Vathsangam H, Zois DS, Annavaram M, Narayanan S, Levorato M, Spruijt-Metz D, Sukhatme G (2012) KNOWME: a case study in wireless body area sensor network design. Commun Mag IEEE 50(5):116–125. doi: 10.1109/mcom.2012.6194391 Google Scholar
  69. 69.
    Kugler P, Schuldhaus D, Jensen U, Eskofier B (2011) Mobile recording system for sport applications. In: Proceedings of the 8th international symposium on computer science in sport (IACSS 2011), Liverpool, pp 67–70Google Scholar
  70. 70.
    Jones S, Fox S (2009) Generations online in 2009. Pew Internet & American Life Project, Washington, DC, pp 1–9Google Scholar
  71. 71.
    Wei H, Li H, Tan J (2012) Body sensor network based context-aware QRS detection. J Signal Process Syst 67(2):93–103. doi: 10.1007/s11265-010-0507-4 Google Scholar
  72. 72.
    Rothman B, Leonard JC, Vigoda MM (2012) Future of electronic health records: implications for decision support. Mt Sinai J Med 79(6):757–768PubMedGoogle Scholar
  73. 73.
    Donker T, Petrie K, Proudfoot J, Clarke J, Birch M-R, Christensen H (2013) Smartphones for smarter delivery of mental health programs: a systematic review. J Med Internet Res 15(11):e247PubMedCentralPubMedGoogle Scholar
  74. 74.
    Fletcher RR, Tam S, Omojola O, Redemske R, Kwan J (2011) Wearable sensor platform and mobile application for use in cognitive behavioral therapy for drug addiction and PTSD. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE, pp 1802–1805Google Scholar
  75. 75.
    Kulkarni P, Ozturk Y (2011) mPHASiS: mobile patient healthcare and sensor information system. J Netw Comput Appl 34(1):402–417. doi: 10.1016/j.jnca.2010.03.030 Google Scholar
  76. 76.
    Rabin C, Bock B (2011) Desired features of smartphone applications promoting physical activity. Telemed e-Health 17(10):801–803. doi: 10.1089/tmj.2011.0055 Google Scholar
  77. 77.
    Verkasalo H, López-Nicolás C, Molina-Castillo FJ, Bouwman H (2010) Analysis of users and non-users of smartphone applications. Telemat Inform 27(3):242–255Google Scholar
  78. 78.
    Giota KG, Kleftaras G (2014) Mental health apps: innovations, risks and ethical considerations. E-Health Telecommun Syst Netw 3(03):19Google Scholar
  79. 79.
    Alemdar H, Ersoy C (2010) Wireless sensor networks for healthcare: a survey. Comput Netw 54(15):2688–2710Google Scholar
  80. 80.
    Kyriacou E, Constantinides P, Pattichis C, Pattichis M, Panayides A (2011) eEmergency health care information systems. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, Boston, MA. IEEE, pp 2501–2504Google Scholar
  81. 81.
    Kumar S, Kambhatla K, Hu F, Lifson M, Xiao Y (2008) Ubiquitous computing for remote cardiac patient monitoring: a survey. Int J Telemed Appl 2008(Spl):1–19. doi: 10.1155/2008/459185 Google Scholar
  82. 82.
    Kamel Boulos MN, Wheeler S, Tavares C, Jones R (2011) How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX. BioMed Eng OnLine 10(1):1–14. doi: 10.1186/1475-925x-10-24 Google Scholar
  83. 83.
    Lane ND, Miluzzo E, Hong L, Peebles D, Choudhury T, Campbell AT (2010) A survey of mobile phone sensing. Commun Mag IEEE 48(9):140–150. doi: 10.1109/mcom.2010.5560598 Google Scholar
  84. 84.
    Pantelopoulos A, Bourbakis NG (2010) A survey on wearable sensor-based systems for health monitoring and prognosis. Syst Man Cybern Part C Appl Rev IEEE Trans 40(1):1–12Google Scholar
  85. 85.
    Latré B, Braem B, Moerman I, Blondia C, Demeester P (2011) A survey on wireless body area networks. Wirel Netw 17(1):1–18. doi: 10.1007/s11276-010-0252-4 Google Scholar
  86. 86.
    Liu L, Liu J (2011) Biomedical sensor technologies on the platform of mobile phones. Front Mech Eng 6(2):160–175. doi: 10.1007/s11465-011-0216-0 Google Scholar
  87. 87.
    Ming L, Wenjing L, Kui R (2010) Data security and privacy in wireless body area networks. Wirel Commun IEEE 17(1):51–58. doi: 10.1109/mwc.2010.5416350 Google Scholar
  88. 88.
    Mughal A, Kanjee M, Liu H (2010) Mobile healthcare infrastructure with Qos and security. In: Cai Y, Cai Y, Magedanz T, Li M, Xia J, Giannelli C (eds) Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, vol vol 48. Springer, Berlin Heidelberg, pp 462–473. doi: 10.1007/978-3-642-17758-3_36 Google Scholar
  89. 89.
    Mosa ASM, Yoo I, Sheets L (2012) A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Mak 12(1):67. doi: 10.1186/1472-6947-12-67 PubMedCentralPubMedGoogle Scholar
  90. 90.
    Lee HJ, Lee SH, Ha K-S, Jang HC, Chung W-Y, Kim JY, Chang Y-S, Yoo DH (2009) Ubiquitous healthcare service using Zigbee and mobile phone for elderly patients. Int J Med Inform 78(3):193–198PubMedGoogle Scholar
  91. 91.
    Schleyer T, Mattsson U, Ni Riordain R, Brailo V, Glick M, Zain R, Jontell M (2011) Advancing oral medicine through informatics and information technology: a proposed framework and strategy. Oral Dis 17(Supplement S1):85–94PubMedGoogle Scholar
  92. 92.
    Steele R, Lo A, Secombe C, Wong YK (2009) Elderly persons’ perception and acceptance of using wireless sensor networks to assist healthcare. Int J Med Inform 78(12):788–801PubMedGoogle Scholar
  93. 93.
    Dilmaghani RS, Bobarshad H, Ghavami M, Choobkar S, Wolfe C (2011) Wireless sensor networks for monitoring physiological signals of multiple patients. IEEE Trans Biomed Circuits Syst 5(4):347–356PubMedGoogle Scholar
  94. 94.
    Atienza AA, Patrick K (2011) Mobile health: the killer app for cyberinfrastructure and consumer health. Am J Prev Med 40(5, Supplement 2):S151–S153. doi: 10.1016/j.amepre.2011.01.008 PubMedGoogle Scholar
  95. 95.
    Bergmann J, McGregor A (2011) Body-worn sensor design: what do patients and clinicians want? Ann Biomed Eng 39(9):2299–2312. doi: 10.1007/s10439-011-0339-9 PubMedGoogle Scholar
  96. 96.
    Lee Y-D, Chung W-Y (2009) Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring. Sens Actuators B Chem 140(2):390–395Google Scholar
  97. 97.
    Bianchi AM, Mendez MO, Cerutti S (2010) Processing of signals recorded through smart devices: sleep-quality assessment. IEEE Trans Inf Technol Biomed 14(3):741–747PubMedGoogle Scholar
  98. 98.
    Coyle S, King-Tong L, Moyna N, O’Gorman D, Diamond D, Di Francesco F, Costanzo D, Salvo P, Trivella MG, De Rossi DE, Taccini N, Paradiso R, Porchet JA, Ridolfi A, Luprano J, Chuzel C, Lanier T, Revol-Cavalier F, Schoumacker S, Mourier V, Chartier I, Convert R, De-Moncuit H, Bini C (2010) BIOTEX-biosensing textiles for personalised healthcare management. IEEE Trans Inf Technol Biomed 14(2):364–370PubMedGoogle Scholar
  99. 99.
    López G, Custodio V, Moreno JI (2010) LOBIN: e-textile and wireless-sensor-network-based platform for healthcare monitoring in future hospital environments. IEEE Trans Inf Technol Biomed 14(6):1446–1458PubMedGoogle Scholar
  100. 100.
    Di Rienzo M, Meriggi P, Rizzo F, Castiglioni P, Lombardi C, Ferratini M, Parati G (2010) Textile technology for the vital signs monitoring in telemedicine and extreme environments. IEEE Trans Inf Technol Biomed 14(3):711–717PubMedGoogle Scholar
  101. 101.
    Taleb T, Bottazzi D, Guizani M, Nait-Charif H (2009) Angelah: a framework for assisting elders at home. Sel Areas Commun IEEE J 27(4):480–494Google Scholar
  102. 102.
    Ho C, Weihua Z (2010) Bluetooth-enabled in-home patient monitoring system: early detection of Alzheimer’s disease. IEEE Wirel Commun 17(1):74–79Google Scholar
  103. 103.
    Yong Gyu L, Ko Keun K, Kwang Suk P (2007) ECG recording on a bed during sleep without direct skin-contact. Biomedl Eng IEEE Trans 54(4):718–725Google Scholar
  104. 104.
    Lim Y, Hong K, Kim K, Shin J, Lee S, Chung G, Baek H, Jeong D-U, Park K (2011) Monitoring physiological signals using nonintrusive sensors installed in daily life equipment. Biomed Eng Lett 1(1):11–20. doi: 10.1007/s13534-011-0012-0 Google Scholar
  105. 105.
    Kim Y, Baek H, Kim J, Lee H, Choi J, Park K (2009) Helmet-based physiological signal monitoring system. Eur J Appl Physiol 105(3):365–372. doi: 10.1007/s00421-008-0912-6 PubMedGoogle Scholar
  106. 106.
    Saito M, Nakajima K, Takano C, Ohta Y, Sugimoto C, Ezoe R, Sasaki K, Hosaka H, Ifukube T, Ino S, Yamashita K (2011) An in-shoe device to measure plantar pressure during daily human activity. Med Eng Phys 33(5):638–645PubMedGoogle Scholar
  107. 107.
    Bodin O, Loginov D, Mitrokhina N (2008) Improvement of ECG analysis for monitoring of cardiac electrical activity. Biomed Eng 42(3):128–131. doi: 10.1007/s10527-008-9030-3 Google Scholar
  108. 108.
    Übeyli ED (2008) Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients. Comput Biol Med 38(3):401–410PubMedGoogle Scholar
  109. 109.
    Uzoka F-ME, Obot O, Barker K, Osuji J (2011) An experimental comparison of fuzzy logic and analytic hierarchy process for medical decision support systems. Comput Methods Programs Biomed 103(1):10–27PubMedGoogle Scholar
  110. 110.
    Tseng C-E, Peng C-Y, Chang M-W, Yen J-Y, Lee C-K, Huang T-S (2010) Novel approach to fuzzy-wavelet ECG signal analysis for a mobile device. J Med Syst 34(1):71–81. doi: 10.1007/s10916-008-9217-x PubMedGoogle Scholar
  111. 111.
    La Foresta F, Mammone N, Morabito FC (2009) PCA–ICA for automatic identification of critical events in continuous coma-EEG monitoring. Biomed Signal Process Control 4(3):229–235Google Scholar
  112. 112.
    Ehmen H, Haesner M, Steinke I, Dorn M, Gövercin M, Steinhagen-Thiessen E (2012) Comparison of four different mobile devices for measuring heart rate and ECG with respect to aspects of usability and acceptance by older people. Appl Ergon 43(3):582–587. doi: 10.1016/j.apergo.2011.09.003 PubMedGoogle Scholar
  113. 113.
    Li H-B, Kohno R (2011) Standardization on body area network and a prototype system based on UWB. J Med Syst 35(5):1–9. doi: 10.1007/s10916-011-9662-9 Google Scholar
  114. 114.
    Di Marco L, Chiari L (2011) A wavelet-based ECG delineation algorithm for 32-bit integer online processing. BioMed Eng Online 10(1):1–19. doi: 10.1186/1475-925x-10-23 Google Scholar
  115. 115.
    Patrick K, Griswold WG, Raab F, Intille SS (2008) Health and the mobile phone. Am J Prev Med 35(2):177–181PubMedCentralPubMedGoogle Scholar
  116. 116.
    Hairong Y, Hongwei H, Youzhi X, Gidlund M (2010) Wireless sensor network based E-health system-Implementation and experimental results. IEEE Trans Consum Electron 56(4):2288–2295Google Scholar
  117. 117.
    Yonglin R, Pazzi RWN, Boukerche A (2010) Monitoring patients via a secure and mobile healthcare system. Wirel Commun IEEE 17(1):59–65Google Scholar
  118. 118.
    Chan V, Ray P, Parameswaran N (2008) Mobile e-Health monitoring: an agent-based approach. IET Commun 2(2):223–230Google Scholar
  119. 119.
    Bayilmis C, Younis M (2012) Energy-aware gateway selection for increasing the lifetime of wireless body area sensor networks. J Med Syst 36(3):1593–1601. doi: 10.1007/s10916-010-9620-y PubMedGoogle Scholar
  120. 120.
    Long Y, Joonsung B, Seulki L, Taehwan R, Kiseok S, Hoi-Jun Y (2011) A 3.9 mW 25-electrode reconfigured sensor for wearable cardiac monitoring system. IEEE J Solid-State Circuits 46(1):353–364Google Scholar
  121. 121.
    Yoo J, Long Y, Seulki L, Yongsang K, Hoi-Jun Y (2010) A 5.2 mW self-configured wearable body sensor network controller and a 12 $mu$ w wirelessly powered sensor for a continuous health monitoring system. Solid-State Circuits IEEE J 45(1):178–188Google Scholar
  122. 122.
    Honggang W, Dongming P, Wei W, Sharif H, Hsiao-hwa C, Khoynezhad A (2010) Resource-aware secure ECG healthcare monitoring through body sensor networks. Wirel Commun IEEE 17(1):12–19Google Scholar
  123. 123.
    Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT (2010) A survey of mobile phone sensing. Commun Mag IEEE 48(9):140–150Google Scholar
  124. 124.
    Wang Y, Lin J, Annavaram M, Jacobson QA, Hong J, Krishnamachari B, Sadeh N (2009) A framework of energy efficient mobile sensing for automatic user state recognition. In: Proceedings of the 7th international conference on Mobile systems, applications, and services, ACM, pp 179–192Google Scholar
  125. 125.
    Hassanzadeh R, Sahama T, Fidge C (2010) A secure framework and related protocols for ubiquitous access to electronic health records using Java sim cards. In: E-Health. Springer, Heidelberg, pp 102–113Google Scholar
  126. 126.
    Pathak A, Hu YC, Zhang M (2012) Where is the energy spent inside my app?: fine grained energy accounting on smartphones with Eprof. Paper presented at the Proceedings of the 7th ACM European conference on Computer Systems, Bern, SwitzerlandGoogle Scholar
  127. 127.
    Khandoker AH, Karmakar CK, Palaniswami M (2011) Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea. Med Eng Phys 33(2):204–209PubMedGoogle Scholar
  128. 128.
    Dong-Her S, Hsiu-Sen C, Binshan L, Shih-Bin L (2010) An embedded mobile ecg reasoning system for elderly patients. Inf Technol Biomed IEEE Trans 14(3):854–865Google Scholar
  129. 129.
    Rashid RA, Rahim MRA, Sarijari MA, Mahalin N (2008) Design and implementation of Wireless Biomedical Sensor Networks for ECG home health monitoring. In: Electronic Design, 2008. ICED 2008. International Conference on, 1–3 Dec 2008. pp 1–4Google Scholar
  130. 130.
    Tatara E, Cinar A (2002) Interpreting ECG data by integrating statistical and artificial intelligence tools. Eng Med Biol Mag IEEE 21(1):36–41Google Scholar
  131. 131.
    Garcia J, Martinez I, Sornmo L, Olmos S, Mur A, Laguna P (2002) Remote processing server for ECG-based clinical diagnosis support. Inf Technol Biomed IEEE Trans 6(4):277–284Google Scholar
  132. 132.
    Hernandez AI, Mora F, Villegas M, Passariello G, Carrault G (2001) Real-time ECG transmission via internet for nonclinical applications. Inf Technol Biomed IEEE Trans 5(3):253–257Google Scholar
  133. 133.
    Wan-Young C, Seung-Chul L, Sing-Hui T (2008) WSN based mobile u-healthcare system with ECG, blood pressure measurement function. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, 20–25 Aug 2008. pp 1533–1536Google Scholar
  134. 134.
    Apiletti D, Baralis E, Bruno G, Cerquitelli T (2009) Real-time analysis of physiological data to support medical applications. Inf Technol Biomed IEEE Trans 13(3):313–321Google Scholar
  135. 135.
    Pandian PS, Mohanavelu K, Safeer KP, Kotresh TM, Shakunthala DT, Gopal P, Padaki VC (2008) Smart vest: wearable multi-parameter remote physiological monitoring system. Med Eng Phys 30(4):466–477PubMedGoogle Scholar
  136. 136.
    Kotz D, Avancha S, Baxi A (2009) A privacy framework for mobile health and home-care systems. Paper presented at the Proceedings of the first ACM workshop on Security and privacy in medical and home-care systems, Chicago, IllinoisGoogle Scholar
  137. 137.
    Xiaodong L, Rongxing L, Xuemin S, Nemoto Y, Kato N (2009) Sage: a strong privacy-preserving scheme against global eavesdropping for ehealth systems. Sel Areas Commun IEEE J 27(4):365–378. doi: 10.1109/jsac.2009.090502 Google Scholar
  138. 138.
    Carrión I, Fernández-Alemán J, Toval A (2011) Usable privacy and security in personal health records human-computer interaction—INTERACT 2011. In: Campos P, Graham N, Jorge J, Nunes N, Palanque P, Winckler M (eds) Lecture notes in computer science, vol vol 6949. Springer, Berlin/Heidelberg, pp 36–43. doi: 10.1007/978-3-642-23768-3_3 Google Scholar
  139. 139.
    Ng H, Sim M, Tan C (2006) Security issues of wireless sensor networks in healthcare applications. BT Technol J 24(2):138–144Google Scholar
  140. 140.
    Kargl F, Lawrence E, Fischer M, Lim YY (2008) Security, privacy and legal issues in pervasive ehealth monitoring systems. In: Mobile Business, 2008. ICMB ‘08. 7th International Conference on, Barcelona. IEEE, pp 296–304Google Scholar
  141. 141.
    Williams J (2010) Social networking applications in health care: threats to the privacy and security of health information. Paper presented at the Proceedings of the 2010 ICSE Workshop on Software Engineering in Health Care, Cape Town, South AfricaGoogle Scholar
  142. 142.
    Deng J, Han R, Mishra S (2006) Decorrelating wireless sensor network traffic to inhibit traffic analysis attacks. Pervasive Mob Comput 2(2):159–186Google Scholar
  143. 143.
    Weerasinghe D, Rajarajan M, Rakocevic V (2009) Device data protection in mobile healthcare applications electronic healthcare. In: Weerasinghe D (ed) Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, vol vol 0001. Springer, Berlin Heidelberg, pp 82–89. doi: 10.1007/978-3-642-00413-1_10 Google Scholar
  144. 144.
    Klingeberg T, Schilling M (2012) Mobile wearable device for long term monitoring of vital signs. Comput Methods Programs Biomed 106(2):89–96. doi: 10.1016/j.cmpb.2011.12.009 PubMedGoogle Scholar
  145. 145.
    Li N, Zhang N, Das SK, Thuraisingham B (2009) Privacy preservation in wireless sensor networks: a state-of-the-art survey. Ad Hoc Netw 7(8):1501–1514. doi: 10.1016/j.adhoc.2009.04.009 Google Scholar
  146. 146.
    Payne JD (2013) The state of standards and interoperability for mhealth. vol March 2013. mHelath AllianceGoogle Scholar
  147. 147.
    Postolache O, Girao PS, Ribeiro M, Guerra M, Pincho J, Santiago F, Pena A (2011) Enabling telecare assessment with pervasive sensing and Android OS smartphone. In: Medical Measurements and Applications Proceedings (MeMeA), 2011 IEEE International Workshop on, Bari, Italy. IEEE, pp 288–293Google Scholar
  148. 148.
    Rui X, Wunsch DC (2010) Clustering algorithms in biomedical research: a review. Biomed Eng IEEE Rev 3:120–154Google Scholar
  149. 149.
    Brownsell S, Bradley D, Blackburn S, Cardinaux F, Hawley MS (2011) A systematic review of lifestyle monitoring technologies. J Telemed Telecare 17(4):185–189. doi: 10.1258/jtt.2010.100803 PubMedGoogle Scholar
  150. 150.
    Keijsers NLW, Horstink MWIM, Gielen SCAM (2003) Online monitoring of dyskinesia in patients with Parkinson’s disease. Eng Med Biol Mag IEEE 22(3):96–103Google Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2014

Authors and Affiliations

  • Mirza Mansoor Baig
    • 1
    Email author
  • Hamid GholamHosseini
    • 1
  • Martin J. Connolly
    • 2
  1. 1.Department of Electrical and Electronic Engineering, School of EngineeringAuckland University of TechnologyAucklandNew Zealand
  2. 2.North Shore Hospital, University of AucklandAucklandNew Zealand

Personalised recommendations