Advertisement

Dose enhancement by various nanoparticles in prostate brachytherapy

  • Mahdi Ghorbani
  • Mahdi BakhshabadiEmail author
  • Alireza Golshan
  • Courtney Knaup
Scientific Paper

Abstract

The aim of this Monte Carlo study is to calculate dose enhancement in tumours by various nanoparticles in prostate brachytherapy using 125I interstitial implants. ProstaSeed 125I brachytherapy source was simulated using MCNPX Monte Carlo code. Dose rate constant, radial dose function and anisotropy function values were calculated and compared with previously published data. Dose enhancement factors (DEFs) were calculated for Fe2O3, Ag, Gd, Pt and Au nanoparticles with concentrations of 7, 18 and 30 mg/ml. Our source simulation was validated by comparing our results with previously published data. Maximum DEF values on the central transverse line, within the tumour, for Fe2O3, Ag, Gd, Pt and Au nanoparticles with 30 mg/ml concentration were 1.27, 1.15, 1.14, 1.32, 1.79, respectively. No general trend in DEF with increasing atomic number, or concentration of nanoparticles was observed. However, DEF was the highest for 30 mg/ml concentration of Au. The 50 % isodose line tightened toward the central point of the spherical tumour and the central 100 % isodose line expanded outward. The presence of nanoparticles in a prostate tumour increases the dose inside tumour and decreases the dose outside it, thus the treatment time and source activity can be decreased due to dose enhancement in the tumour. While more preclinical studies on other aspects are necessary, using nanoparticles can be proposed as a useful tool in prostate brachytherapy. Au nanoparticles with higher concentrations can be more useful for this purpose when compared to other nanoparticles.

Keywords

Brachytherapy Prostate cancer Nanoparticles Dose enhancement Monte Carlo 

Notes

Acknowledgments

The authors would like to thank North Khorasan University of Medical Sciences for providing funding for this research.

References

  1. 1.
    Kuban DA, Potters L, Lawton CA et al (2007) Prostate cancer. In: Gunderson LL, Tepper JE (eds) Clinical radiation oncology. Elsevier, Philadelphia, pp 1165–1236Google Scholar
  2. 2.
    Nguyen PL, Zietman AL (2007) High-dose external beam radiation for localized prostate cancer: current status and future challenges. Cancer J 13(5):295–301PubMedCrossRefGoogle Scholar
  3. 3.
    Li Z, Palta JR, Fan JJ (2000) Monte Carlo calculations and experimental measurements of dosimetry parameters of a new 103Pd source. Med Phys 27(5):1108–1112PubMedCrossRefGoogle Scholar
  4. 4.
    Holmgren-Andersson M (2005) Brachyterapy for cancer of the cervix. 3D dose distributions for new ring applicator using BrachyVision, for clinical use. Master of Sciences Thesis, Medical Radiation Physics Department, Lund University, LundGoogle Scholar
  5. 5.
    Cho S (2005) Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50(15):163–173CrossRefGoogle Scholar
  6. 6.
    Cho SH, Jones BL, Krishnan S (2009) The dosimetric feasibility of gold nanoparticle aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/X-ray sources. Phys Med Biol 54(16):4889–4905PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Herold DM, Das IJ, Stobbe CC, Iyer RV, Chapman JD (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76(10):1357–1364PubMedCrossRefGoogle Scholar
  8. 8.
    Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HH, Wu CL (2008) Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci 99(7):1479–1484PubMedCrossRefGoogle Scholar
  9. 9.
    Roeske JC, Nunez L, Wiederrecht G, Weichselbaum RR (2004) Characterization of dose enhancement produced by nanoparticles. Phys Med Biol 49(18):309–315CrossRefGoogle Scholar
  10. 10.
    Zhang X, Xing JZ, Chen J, Ko L, Amanie J, Gulavita S et al (2008) Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin Invest Med 31(3):160–167Google Scholar
  11. 11.
    Zhang SX, Gao J, Buchholz TA, Wang Z, Salehpour MR, Drezek RA et al (2009) Quantifying tumour-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study. Biomed Microdevices 11(4):925–933PubMedCrossRefGoogle Scholar
  12. 12.
    Leung MK, Chow JC, Chithrani BD, Lee MJ, Oms B, Jaffray DA (2011) Irradiation of gold nanoparticles by X-rays: monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38(2):624–631PubMedCrossRefGoogle Scholar
  13. 13.
    Cho S, Jeong JH, Kim ChH, Yoon M (2010) Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy. J Korean Phys Soc 56(6):1754–1758CrossRefGoogle Scholar
  14. 14.
    Ngwa W, Makrigiorgos GM, Berbeco RI (2012) Gold nanoparticle enhancement of stereotactic radiosurgery for neovascular age-related macular degeneration. Phys Med Biol 57(20):6371–6380PubMedCrossRefGoogle Scholar
  15. 15.
    Carleton University (2013) http://www.physics.carleton.ca/clrp/seed_database/I125/ProstaSeed_125SL. Accessed 06 Jan 2013
  16. 16.
    Rivard MJ, Butler WM, DeWerd LA, Huq MS, Ibbott GS, Meigooni AS et al (2007) Supplement to the 2004 update of the AAPM Task Group No. 43 Report. Med Phys 34(6):2187–2205PubMedCrossRefGoogle Scholar
  17. 17.
    Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS et al (2004) Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31(3):633–674PubMedCrossRefGoogle Scholar
  18. 18.
    Pelowitz D (ed) (2008) MCNPX users manual, LA-CP-07-1473 Version 2.6.0, National Laboratory, Los AlamosGoogle Scholar
  19. 19.
    Bahreyni Toossi MT, Ghorbani M, Mowlavi AA, Taheri M, Layegh M, Makhdoumi Y et al (2010) Air kerma strength characterization of a GZP6 cobalt-60 brachytherapy source. Rep Pract Oncol Radiother 15(6):190–194CrossRefGoogle Scholar
  20. 20.
    Zhang H, Baker C, McKinsey R, Meigooni A (2005) Dose verification with Monte Carlo technique for prostate brachytherapy implants with 125I sources. Med Dosim 30(2):85–91PubMedCrossRefGoogle Scholar
  21. 21.
    ICRU (1989) ICRU Report No. 44, Tissue substitutes in radiation dosimetry and measurement. ICRU, BethesdaGoogle Scholar
  22. 22.
    Yan S, Zhang D, Gu N, Zheng J, Ding A, Wang Z et al (2005) Therapeutic effect of Fe2O3 nanoparticles combined with magnetic fluid hyperthermia on cultured liver cancer cells and xenograft liver cancers. J Nanosci Nanotechnol 5(8):1185–1192PubMedCrossRefGoogle Scholar
  23. 23.
    Mukherjee SG, O’Claonadh N, Casey A, Chambers G (2012) Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol In Vitro 26(2):238–251PubMedCrossRefGoogle Scholar
  24. 24.
    Bahreyni Toossi MT, Ghorbani M, Mehrpouyan M, Akbari F, Sobhkhiz Sabet L, Soleimani Meigooni A (2012) A Monte Carlo study on tissue dose enhancement in brachytherapy: a comparison between gadolinium and gold nanoparticles. Australas Phys Eng Sci Med 35(2):177–185PubMedCrossRefGoogle Scholar
  25. 25.
    Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y et al (2010) Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21(8):85103PubMedCrossRefGoogle Scholar
  26. 26.
    Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol JP, Reilly RM (2013) Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumour xenografts to X-radiation. Breast Cancer Res Treat 137(1):81–91PubMedCrossRefGoogle Scholar
  27. 27.
    Meigooni AS, Luerman CM, Sowards KT (2009) Evaluation of the dose distribution for prostate implants using various 125I and 103Pd sources. Med Phys 36(4):1452–1458PubMedCrossRefGoogle Scholar
  28. 28.
    Landry G, Reniers B, Pignol JP, Beaulieu L, Verhaegen F (2011) The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources. Med Phys 38(3):1526–1533PubMedCrossRefGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2013

Authors and Affiliations

  • Mahdi Ghorbani
    • 1
  • Mahdi Bakhshabadi
    • 1
    Email author
  • Alireza Golshan
    • 1
  • Courtney Knaup
    • 2
  1. 1.North Khorasan University of Medical SciencesBojnurdIran
  2. 2.Comprehensive Cancer Centers of NevadaLas VegasUSA

Personalised recommendations