Investigating the changes in heart rate asymmetry (HRA) with perturbation of parasympathetic nervous system

  • Chandan Karmakar
  • Ahsan KhandokerEmail author
  • Marimuthu Palaniswami
Scientific Paper


The heart rate asymmetry (HRA) is a disproportionate distribution of heart rate signal. The current study was designed to assess the changes in HRA in experimental conditions using Poincaré plot during parasympathetic blockade (atropine infusion) and parasympathetic enhancement (scopolamine administration). After atropine infusion, the heart rate variability in 5 out of 8 subjects was found asymmetric. In contrast, all 8 subjects were found to be asymmetric during scopolamine administration. The physiological relevance of HRA was demonstrated by showing correlation with standard frequency domain parameters during all phases of the experiment. The deviation of asymmetry index (GI p ) from symmetric range was further analyzed, which was maximum during scopolamine administration and minimum during atropine infusion. These findings suggest that parasympathetic block reduces the prevalence of HRA, and has significant correlation of GI p with frequency domain features of HRV analysis.


Heart rate asymmetry (HRA) Heart rate variability (HRV) Poincaré plot Parasympathetic activity 


  1. 1.
    Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS (2006) Heart rate variability: a review. Med Biological Eng Comput 44(12):1031–1051CrossRefGoogle Scholar
  2. 2.
    Akselrod S, Gordon D, Ubel F, Shannon D, Berger A, Cohen R (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213(4504):220–222. doi: 10.1126/science.6166045 PubMedCrossRefGoogle Scholar
  3. 3.
    Aronson D, Burger AJ (2001) Effect of beta-blockade on heart rate variability in decompensated heart failure. Int J Cardiol 79:31–39PubMedCrossRefGoogle Scholar
  4. 4.
    Berger RD, Saul JP, Cohen RJ (1989) Transfer function analysis of autonomic regulation. i. canine atrial rate response. Am J Physiol Heart Circ Physiol 256(1):H142–152Google Scholar
  5. 5.
    Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of poincare plot geometry reflect nonlinear features of heart rate variability. IEEE Trans on Biomed Eng 48:1342–1347CrossRefGoogle Scholar
  6. 6.
    Brennan M, Palaniswami M, Kamen P (2002) Poicare plot interpretation using a physiological model of hrv based on a network of oscillators. Am J Physiol Heart Circ Physiol 283:1873–1886Google Scholar
  7. 7.
    Carney RM, Blumenthal JA, Stein PK, Watkins L, Catellier D, Berkman LF (2001) Depression, heart rate variability, and acute myocardial infarction. Circulation 104:2024–2028PubMedCrossRefGoogle Scholar
  8. 8.
    Carrasco S, Gaitan MJ, Gonzalez R, Yanez O (2001) Correlation among poincaré plot indexes and time and frequency domain measures of heart rate variability. J Med Eng Technol 25:240–248PubMedCrossRefGoogle Scholar
  9. 9.
    Chialvo DR, Millonas MM (1995) Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet. Phys Lett A 209(1–2):26–30CrossRefGoogle Scholar
  10. 10.
    Corr PB, Pitt B, Natelson BH, J RD, Shine KI, Skinner JE (1987) Sudden cardiac death neural-chemical interactions. Circ J 76(Suppl I):208–214Google Scholar
  11. 11.
    Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy analysis of physiological time series. Phys Ref Lett 89:062,102CrossRefGoogle Scholar
  12. 12.
    Costa M, Goldberger AL, Peng CK (2005) Broken asymmetry of thehuman heartbeat: Loss of time irreversibility in aging and disease.Phys Rev Lett 95:198,102:1–4Google Scholar
  13. 13.
    Dibner-Dunlap ME, Eckberg DL, Magid NM, Cintron-Trevino NM (1985) The long-term increase of baseline and reflexly augmented levels of human vagal-cardiac nervous activity induced by scopolamine. Circulation 71(4):797–804PubMedCrossRefGoogle Scholar
  14. 14.
    Eckberg DL (1980) Nonliearities of the human carotid baroreceptor-cardiac reflex. Circ Res 47:208–216PubMedCrossRefGoogle Scholar
  15. 15.
    Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circ J 96:3224–3232PubMedCrossRefGoogle Scholar
  16. 16.
    Task Force of ESC & NASPE F: (1996) Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circ J 93(5):1043–1065CrossRefGoogle Scholar
  17. 17.
    Guzik P, Piskorski J, Krauze T, Wykretowicz A, Wysocki H (2006) Heart rate asymmetry by Poincaré plots of RR intervals. Biomed Tech 51:530–537CrossRefGoogle Scholar
  18. 18.
    Hayano J, Sakakibara Y, Yamada A (1991) Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am J Cardiol 67:199–204PubMedCrossRefGoogle Scholar
  19. 19.
    Hayano J, Takahashi H, Toriyama T, Mukai S, Okada A, Sakata S, Yamada A, Ohte N, Kawahara H (1999) Prognostic value of heart rate variability during long-term follow-up in chronic haemodialysis patiens with end-stage renal disease. Nephrol Dial Transplant 14:1480–1488CrossRefGoogle Scholar
  20. 20.
    Jaffe RS, Fung DL, Behrman KH (1994) Optimal frequency ranges for extracting information on autonomic activity from the heart rate spectrogram. Journal of autonomic nervous system 46(1–2):37–46PubMedCrossRefGoogle Scholar
  21. 21.
    Kamen PW, Krum H, Tonkin AM (1996) Poincaré plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci 91:201–208PubMedGoogle Scholar
  22. 22.
    Karmakar CK, Khandoker AH, Gubbi J, Palaniswami M (2009) Defining asymmetry in heart rate variability signals using a poincaré plot. Physiol Meas 30(11):1227PubMedCrossRefGoogle Scholar
  23. 23.
    La Rovere MT, Mortara A, Pantaleo P, Maestri R, Cobelli F, Tavazzi L (1994) Scopolamine improves autonomic balance in advanced congestive heart failure. Circulation 90(2):838–843PubMedCrossRefGoogle Scholar
  24. 24.
    Liebovitch LS, Scheurle D (2000) Two lessons from fractals and chaos. Complex Int 5:34–43CrossRefGoogle Scholar
  25. 25.
    Makikallio TH, Seppanen T, Airaksinen KE, Koistinen J, Tulppo MP, Peng CK, Goldberger AL, Huikuri HV (1997) Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. Am J Cardiol 14(3):779–783CrossRefGoogle Scholar
  26. 26.
    Malliani A (1999) The pattern of sympathovagal balance explored in the frequency domain. Physiol Behav 14(3):111–117Google Scholar
  27. 27.
    Pagani M, Lucini D (2001) Autonomic dysregulation in essential hypertension: insight from heart rate and arterial pressure variability. Auton Neurosci 90:76–82PubMedCrossRefGoogle Scholar
  28. 28.
    Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59(2):178–193PubMedCrossRefGoogle Scholar
  29. 29.
    Piskorski J, Guzik P (2007) Geometry of the Poincaré plot of RR intervals and its asymmetry in healthy hearts. Physiol Meas 28:287–300PubMedCrossRefGoogle Scholar
  30. 30.
    Piskorski J, Guzik P (2011) Asymmetric properties of long-term and total heart rate variability. Med Biol Eng Comput 49(11):1289–1297PubMedCrossRefGoogle Scholar
  31. 31.
    Porta A, Guzzetti S, Pagani M, Malliani A, Cerutti S (2000) Prediction of short cardiovascular variability signals based on conditional distribution. IEEE Trans Biomed Eng 47:1555–1564PubMedCrossRefGoogle Scholar
  32. 32.
    Porta A, Guzzetti S, Montano N, Gnecchi-Ruscone T, Malliani A (2006) Time reversibility in short-term heart period variability. Comp Cardiol 33:77–80Google Scholar
  33. 33.
    Porta A, Guzzetti S, Furlan R, Gnecchi-Ruscone T, Montano N (2007) Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction. IEEE Trans Biomed Eng 54:94–106PubMedCrossRefGoogle Scholar
  34. 34.
    Porta A, Casali KR, Casali AG, Gnecchi-Ruscone T, Tovaldini E, Montano N, Lange S, Geue D, Cysarz D, Leeuwen PV (2008) Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am J Physiol Regul Integr Comp Physiol 295:R550–R557PubMedCrossRefGoogle Scholar
  35. 35.
    Prigogine I, Antoniou I (2007) Laws of nature and time symmetry breaking. Ann N U Acad Sci 879:8–28CrossRefGoogle Scholar
  36. 36.
    Rosenblueth A, A SF (1934) The interrelations of vagal and accelerator effects on the cardiac rate. Am J Physiol 110:42–55Google Scholar
  37. 37.
    Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101CrossRefGoogle Scholar
  38. 38.
    Takahashi N, Nakagawa M, Saikawa T, Ooie T, Yufu K, Shigematsu S (2001) Effect of essential hypertension on cardiac autonomic function in type 2 diabetic patients. J Am Coll Cardiol 38:232–237PubMedCrossRefGoogle Scholar
  39. 39.
    Toichi M, Sugiura T, Murai T, Sengoku A (1997) A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of RR interval. J Auton Nerv Syst 62:79–84PubMedCrossRefGoogle Scholar
  40. 40.
    Tulppo MP, Makikallio TH, Takala TES, Seppanen T, V HH (1996) Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol 271:H244–H252PubMedGoogle Scholar
  41. 41.
    Tulppo MP, Makikallio TH, Seppanen T, Airaksinen JKE, V HH (1998) Heart rate dynamics during accentuated sympathovagal interaction. Am J Physiol 247:H810–H816Google Scholar
  42. 42.
    Vybrial T, Byrg RJ, Maddens ME, Bhasin SS, Chronin WE, Boden WE, Lehmann MH (1990) Effects of transdermal scopolamine on heart rate variability in normal subjects. Am J Cariol 65:604–608CrossRefGoogle Scholar
  43. 43.
    Welch PD (1967) The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoustics 15(2):70–73CrossRefGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2012

Authors and Affiliations

  • Chandan Karmakar
    • 1
  • Ahsan Khandoker
    • 1
    • 2
    • 2
    Email author
  • Marimuthu Palaniswami
    • 1
  1. 1.Department of Electrical & Electronic EngineeringThe University of Melbourne ParkvilleMelbourneAustralia
  2. 2.Department of Biomedical EngineeringKhalifa UniversityAbu DhabiUAE

Personalised recommendations