Tools to analyse and display variations in anatomical delineation

  • Martin A. EbertEmail author
  • L. N. McDermott
  • A. Haworth
  • E. van der Wath
  • B. Hooton
Scientific Paper


Variations in anatomical delineation, principally due to a combination of inter-observer contributions and image-specificity, remain one of the most significant impediments to geometrically-accurate radiotherapy. Quantification of spatial variability of the delineated contours comprising a structure can be made with a variety of metrics, and the availability of software tools to apply such metrics to data collected during inter-observer or repeat-imaging studies would allow their validation. A suite of such tools have been developed which use an Extensible Markup Language format for the exchange of delineated 3D structures with radiotherapy planning or review systems. These tools provide basic operations for manipulating and operating on individual structures and related structure sets, and for deriving statistics on spatial variations of contours that can be mapped onto the surface of a reference structure. Use of these tools on a sample dataset is demonstrated together with import and display of results in the SWAN treatment plan review system.


Anatomical delineation Inter-observer variation Clinical trials Radiotherapy Software 



This research received funding from Cancer Australia and the Diagnostics and Technology Branch of the Australian Government Department of Health and Ageing. We are grateful to Dr. Marc Molinari from GeodiseLab for assistance and for the provision of the XML toolbox for Matlab; John Geraghty for work preparing sample data; and Matthijs Breebaart for the initial formulation of the XML format.

Supplementary material

13246_2012_136_MOESM1_ESM.xml (280 kb)
Supplementary material 1 (XML 279 kb)
13246_2012_136_MOESM2_ESM.xsd (18 kb)
Supplementary material 2 (XSD 18.1 kb)


  1. 1.
    Hamilton CS, Ebert MA (2005) Volumetric uncertainty in radiotherapy. Clin Oncol 17(6):456–464CrossRefGoogle Scholar
  2. 2.
    Michalski JM, Lawton C, El Naqa I, Ritter M, O’Meara E, Seider MJ et al (2010) Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 76(2):361–368PubMedCrossRefGoogle Scholar
  3. 3.
    ICRU (1999) Prescribing, recording and reporting photon beam therapy. Bethesda MD: International Commission on Radiological Units. Report No.: Report 62Google Scholar
  4. 4.
    ICRU (2010) Prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT). Bethesda MD: International Commission on Radiological Units. Report No.: Report 83Google Scholar
  5. 5.
    Jameson MG, Holloway LC, Vial PJ, Vinod SK, Metcalfe PE (2010) A review of methods of analysis in contouring studies for radiation oncology. J Med Imaging Radiat Oncol 54(5):401–410PubMedCrossRefGoogle Scholar
  6. 6.
    Lee JA (2010) Segmentation of positron emission tomography images: some recommendations for target delineation in radiation oncology. Radiother Oncol 96(3):302–307PubMedCrossRefGoogle Scholar
  7. 7.
    Huyskens DP, Maingon P, Vanuytsel L, Remouchamps V, Roques T, Dubray B et al (2009) A qualitative and a quantitative analysis of an auto-segmentation module for prostate cancer. Radiother Oncol 90(3):337–345PubMedCrossRefGoogle Scholar
  8. 8.
    Isambert A, Dhermain F, Bidault F, Commowick O, Bondiau PY, Malandain G et al (2008) Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context. Radiother Oncol 87(1):93–99PubMedCrossRefGoogle Scholar
  9. 9.
    Reed VK, Woodward WA, Zhang LF, Strom EA, Perkins GH, Tereffe W et al (2009) Automatic segmentation of whole breast using atlas approach and deformable image registration. Int J Radiat Oncol Biol Phys 73(5):1493–1500PubMedCrossRefGoogle Scholar
  10. 10.
    Sims R, Isambert A, Gregoire V, Bidault F, Fresco L, Sage J et al (2009) A pre-clinical assessment of an atlas-based automatic segmentation tool for the head and neck. Radiother Oncol 93(3):474–478PubMedCrossRefGoogle Scholar
  11. 11.
    Deurloo KEI, Steenbakkers R, Zijp LJ, de Bois JA, Nowak P, Rasch CRN et al (2005) Quantification of shape variation of prostate and seminal vesicles during external beam radiotherapy. Int J Radiat Oncol Biol Phys 61(1):228–238PubMedCrossRefGoogle Scholar
  12. 12.
    Song WY, Chiu B, Bauman GS, Lock M, Rodrigues G, Ash R et al (2006) Prostate contouring uncertainty in megavoltage computed tomography images acquired with a helical tomotherapy unit during image-guided radiation therapy. Int J Radiat Oncol Biol Phys 65(2):595–607PubMedCrossRefGoogle Scholar
  13. 13.
    Remeijer P, Rasch C, Lebesque JV, van Herk M (1999) A general methodology for three-dimensional analysis of variation in target volume delineation. Med Phys 26(6):931–940PubMedCrossRefGoogle Scholar
  14. 14.
    van der Put RW, Raaymakers BW, Kerkhof EM, van Vulpen M, Lagendijk JJW (2008) A novel method for comparing 3D target volume delineations in radiotherapy. Phys Med Biol 53(8):2149–2159PubMedCrossRefGoogle Scholar
  15. 15.
    Brock KK, Dawson LA, Sharpe MB, Moseley DJ, Jaffray DA (2006) Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue. Int J Radiat Oncol Biol Phys 64(4):1245–1254PubMedCrossRefGoogle Scholar
  16. 16.
    Wiltshire KL, Brock KK, Haider MA, Zwahlen D, Kong V, Chan E et al (2007) Anatomic boundaries of the clinical target volume (prostate bed) after radical prostatectomy. Int J Radiat Oncol Biol Phys 69(4):1090–1099PubMedCrossRefGoogle Scholar
  17. 17.
    Ebert MA, Haworth A, Kearvell R, Hooton B, Coleman R, Spry NA et al (2008) Detailed review and analysis of complex radiotherapy clinical trial planning data: evaluation and initial experience with the SWAN software system. Radiother Oncol 86:200–210PubMedCrossRefGoogle Scholar
  18. 18.
    Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921PubMedCrossRefGoogle Scholar
  19. 19.
    Baxter BS, Hitchner LE, Maguire GQ Jr (1982) A standard format for digital image exchange. AAPM, MadisonGoogle Scholar
  20. 20.
    NEMA (2001) Digital imaging and communications in medicine (DICOM) standard. Office of Publications, Washington DCGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2012

Authors and Affiliations

  • Martin A. Ebert
    • 1
    • 2
    Email author
  • L. N. McDermott
    • 3
  • A. Haworth
    • 4
    • 5
  • E. van der Wath
    • 1
  • B. Hooton
    • 1
  1. 1.Department of Radiation OncologySir Charles Gairdner HospitalNedlandsAustralia
  2. 2.School of PhysicsUniversity of Western AustraliaCrawleyAustralia
  3. 3.Universitair Medisch CentrumUtrechtThe Netherlands
  4. 4.Department of Physical SciencesPeter MacCallum Cancer CentreMelbourneAustralia
  5. 5.School of Applied SciencesRMIT UniversityMelbourneAustralia

Personalised recommendations