Advertisement

Cardiovascular Engineering and Technology

, Volume 10, Issue 4, pp 618–627 | Cite as

Vascular Parameters for Ambulatory Monitoring of Congestive Heart Failure Patients: Proof of Concept

  • C. B. GoyEmail author
  • L. M. Yanicelli
  • N. Vargas
  • L. L. Lobo Marquez
  • J. Tazar
  • R. E. Madrid
  • M. C. Herrera
Original Article
  • 31 Downloads

Abstract

Purpose

Prompt detection of congestion is an essential target in order to prevent heart failure (HF) related hospitalization, being ambulatory monitoring a promising strategy to do so. A successful non-invasive ambulatory monitoring system requires automatic devices for physiological data recording; these data must give information about HF deterioration early enough to predict HF-related adverse events. This work aims to evaluate seven vascular parameters for the ambulatory monitoring of congestive heart failure patients.

Methods

Seven vascular parameters are proposed as indicators of HF deterioration. These parameters are obtained using venous occlusion plethysmography; a technique that uses hardware able of being miniaturized and easily integrated into wearables for ambulatory monitoring. The ability of the proposed vascular parameters to detect congestion is evaluated in eight healthy volunteers and ten congestive heart failure patients with different congestion levels—mild, moderate and severe.

Results

Most parameters distinguish between healthy volunteers and heart failure patients, and some of them present significant differences between volunteers and low levels of congestion—mild or moderate.

Conclusion

Home monitoring of some of the proposed parameters could detect HF deterioration on its onset and alert to health personnel.

Keywords

Venous occlusion plethysmography Decompensated heart failure Telemonitoring Wearables 

Abbreviations

ADIP

Analog–digital impedance plethysmograph

ANOVA

Analysis of variance

BF

Blood flow

Ccalf

Venous compliance

CFC

Capillary filtration coefficient

DAP

Diastolic arterial pressure

ECG

Electrocardiogram

HF

Heart failure

HV

Healthy volunteers

M

Mild congestion

MAP

Mean arterial pressure

MoC

Moderate congestion

NFF

Net fluid filtration

OC

Occluder cuff

P

Patients

SAP

Systolic arterial pressure

SC

Severe congestion

SVR

Systemic vascular resistance

VC

Venous capacitance

VOP

Venous occlusion plethysmography

Notes

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments.

Supplementary material

13239_2019_432_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. 1.
    Abraham, W. T. The role of implantable hemodynamic monitors to manage heart failure. Heart Fail. Clin. 11(2):183–189, 2015.CrossRefGoogle Scholar
  2. 2.
    Abraham, W. T., S. Compton, G. Haas, B. Foreman, R. C. Canby, R. Fishel, et al. Intrathoracic impedance vs. daily weight monitoring for predicting worsening heart failure events: results of the Fluid Accumulation Status Trial (FAST). Congest. Heart Fail. 17(2):51–55, 2011.CrossRefGoogle Scholar
  3. 3.
    Adamson, P. B., A. Magalski, F. Braunschweig, M. Böhm, D. Reynolds, D. Steinhaus, et al. Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system. J. Am. Coll. Cardiol. 41(4):565–571, 2003.CrossRefGoogle Scholar
  4. 4.
    Anderson, Jr, F. A., W. W. Durgin, and H. Brownell Wheeler. Interpretation of VOP using a nonlinear model. Med. Biol. Eng. Comput. 24:379–385, 1986.CrossRefGoogle Scholar
  5. 5.
    Anvar, M. D., H. Z. Khiabani, A. J. Kroese, and E. Stranden. Alterations in capillary permeability in the lower limb of patients with chronic critical limb ischaemia and oedema. Vasa 29(2):106–111, 2000.CrossRefGoogle Scholar
  6. 6.
    Clark, A. L., and J. G. Cleland. Causes and treatment of oedema in patients with heart failure. Nat Rev Card 10(3):156–170, 2013.CrossRefGoogle Scholar
  7. 7.
    Conraads, V. M., L. Tavazzi, M. Santini, F. Oliva, B. Gerritse, C. M. Yu, and M. R. Cowie. Sensitivity and positive predictive value of implantable intrathoracic impedance monitoring as a predictor of heart failure hospitalizations: the SENSE-HF trial. Eur. Heart J. 32(18):2266–2273, 2011.CrossRefGoogle Scholar
  8. 8.
    Cotter, G., Y. Moshkovitz, E. Kaluski, O. Milo, Y. Nobikov, A. Schneeweiss, et al. The role of cardiac power and systemic vascular resistance in the pathophysiology and diagnosis of patients with acute congestive heart failure. Eur J Heart Failure 5(4):443–451, 2003.CrossRefGoogle Scholar
  9. 9.
    Friedman, M. M. Older adults’ symptoms and their duration before hospitalization for heart failure. Heart Lung 26(3):169–176, 1997.CrossRefGoogle Scholar
  10. 10.
    Gay, R., S. Wool, M. Paquin, and S. Goldman. Total vascular pressure-volume relationship in conscious rats with chronic heart failure. Am. J. Physiol. Heart Circ. Physiol. 251(3):H483–H489, 1986.CrossRefGoogle Scholar
  11. 11.
    Geddes, L. A., and L. E. Baker. Principles of applied biomedical instrumentation. New York: Wiley, 1975.Google Scholar
  12. 12.
    Gheorghiade, M., F. Follath, P. Ponikowski, J. H. Barsuk, J. E. Blair, J. G. Cleland, et al. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur. J. Heart Fail. 12(5):423–433, 2010.CrossRefGoogle Scholar
  13. 13.
    Girerd, N., M. F. Seronde, S. Coiro, T. Chouihed, P. Bilbault, F. Braun, L. Fillieux, et al. Integrative assessment of congestion in heart failure throughout the patient journey. JACC 6(4):273–285, 2017.Google Scholar
  14. 14.
    Goy, C. B., J. M. Dominguez, M. A. Gómez López, R. E. Madrid, and M. C. Herrera. Electrical characterization of conductive textile materials and its evaluation as electrodes for venous occlusion plethysmography. J. Med. Eng. Technol. 37(6):359–367, 2013.CrossRefGoogle Scholar
  15. 15.
    Goy, C. B., K. A. Mauro, L. M. Yanicelli, N. F. Parodi, M. G. López, and M. C. Herrera. Automatic digital-analog impedance plethysmograph. J. Phys. Conf. Ser. 705(1):012007, 2016.CrossRefGoogle Scholar
  16. 16.
    Groothuis, J. T., L. Van Vliet, M. Kooijman, and M. T. Hopman. Venous cuff pressures from 30 mmHg to diastolic pressure are recommended to measure arterial inflow by plethysmography. J. Appl. Physiol. 95(1):342–347, 2003.CrossRefGoogle Scholar
  17. 17.
    Halliwill, J. R., C. T. Minson, and M. J. Joyner. Measurement of limb venous compliance in humans: technical considerations and physiological findings. J. Appl. Physiol. 87(4):1555–1563, 1999.CrossRefGoogle Scholar
  18. 18.
    Hussain Kazmi, S. S., and E. Stranden. Pathophysiological aspects of lower limb oedema in patients with proximal femoral fractures. Scand J Clin Lab Inves 69(7):741–747, 2009.CrossRefGoogle Scholar
  19. 19.
    Jensen, M. R., L. Simonsen, T. Karlsmark, and J. Bülow. Microvascular filtration is increased in the forearms of patients with breast cancer-related lymphedema. J. Appl. Physiol. 114(1):19–27, 2013.CrossRefGoogle Scholar
  20. 20.
    Kitsiou, S., G. Paré, and M. Jaana. Effects of home telemonitoring interventions on patients with chronic heart failure: an overview of systematic reviews. J. Med. Internet Res. 17(3):e63, 2015.CrossRefGoogle Scholar
  21. 21.
    Leithe, M. E., R. D. Margorien, J. B. Hermiller, D. V. Unverferth, and C. V. Leier. Relationship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure. Circulation 69(1):57–64, 1984.CrossRefGoogle Scholar
  22. 22.
    Lewis, D. M., J. E. Tooke, M. Beaman, J. Gamble, and A. C. Shore. Peripheral microvascular parameters in the nephrotic syndrome. Kidney Int. 54:1261–1266, 1998.CrossRefGoogle Scholar
  23. 23.
    Longhurst, J., R. J. Capone, D. T. Mason, and R. Zelis. Comparison of blood flow measured by plethysmograph and flowmeter during steady state forearm exercise. Circulation 49(3):535–540, 1974.CrossRefGoogle Scholar
  24. 24.
    Magrini, F., and A. P. Niarchos. Ineffectiveness of sublingual nitroglycerin in acute left ventricular failure in the presence of massive peripheral edema. Am. J. Cardiol. 45(4):841–847, 1980.CrossRefGoogle Scholar
  25. 25.
    Ogilvie, R. I., and D. Zborowska-Sluis. Effect of chronic rapid ventricular pacing on total vascular capacitance. Circulation 85(4):1524–1530, 1992.CrossRefGoogle Scholar
  26. 26.
    Purcell, R., S. McInnes, and J. E. Halcomb. Telemonitoring can assist in managing cardiovascular disease in primary care: a systematic review of systematic reviews. BMC Fam. Pract. 15(1):1, 2014.CrossRefGoogle Scholar
  27. 27.
    Ramsey, M. W., J. Goodfellow, C. J. H. Jones, L. A. Luddington, M. J. Lewis, and A. H. Henderson. Endothelial control of arterial distensibility is impaired in chronic heart failure. Circulation 92(11):3212–3219, 1995.CrossRefGoogle Scholar
  28. 28.
    Ritzema, J., I. C. Melton, I. M. Richards, I. G. Crozier, C. Frampton, R. N. Doughty, et al. Direct left atrial pressure monitoring in ambulatory heart failure patients initial experience with a new permanent implantable device. Circulation 116(25):2952–2959, 2007.CrossRefGoogle Scholar
  29. 29.
    Rodríguez-Artalejo, F., J. R. Banegas, and P. Guallar-Castillón. Epidemiología de la insuficiencia cardíaca. Rev. Esp. Card 57(2):163–170, 2004.CrossRefGoogle Scholar
  30. 30.
    Savarese, G., and L. H. Lund. Global public health burden of heart failure. Cardiac Fail. Rev. 3(1):7, 2017.CrossRefGoogle Scholar
  31. 31.
    Seem, E., and E. Stranden. Transcapillary filtration in lower limbs with deep venous thrombosis; the role of the capillary filtration coefficient. Scand. J. Clin. Lab. Invest. 50(3):331–336, 1990.CrossRefGoogle Scholar
  32. 32.
    Sigdell, J. E. Venous occlusion plethysmography. Part 1: basic principles and applications. Biomed Eng 10(8):300–302, 1975.Google Scholar
  33. 33.
    Skoog, J., H. Zachrisson, M. Lindenberger, M. Ekman, L. Ewerman, and T. Länne. Calf venous compliance measured by venous occlusion plethysmography: methodological aspects. Eur. J. Appl. Physiol. 115(2):245–256, 2015.CrossRefGoogle Scholar
  34. 34.
    Stranden, E. Transcapillary fluid filtration in patients with leg edema following arterial reconstruction for lower limb atherosclerosis. Vasa 12(3):219, 1983.Google Scholar
  35. 35.
    Sullivan, M. J., J. D. Knight, M. B. Higginbotham, and F. R. Cobb. Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure. Circulation 80(4):769–781, 1989.CrossRefGoogle Scholar
  36. 36.
    Tyberg, J. V. How changes in venous capacitance modulate cardiac output. Pflügers Archiv. Eur. J. Appl. Physiol. 445(1):10–17, 2002.CrossRefGoogle Scholar
  37. 37.
    Webster, J. G. Medical Instrumentation-Application and Design. New York: Wiley, pp. 366–372, 2010.Google Scholar
  38. 38.
    Zelis, R., and S. F. Flaim. Alterations in vasomotor tone in congestive heart failure. Prog. Cardiovasc. Dis. 24(6):437–459, 1982.CrossRefGoogle Scholar
  39. 39.
    Zelis, R., J. Longhurst, R. J. Capone, D. T. Mason, and R. Kleckner. A comparison of regional blood flow and oxygen utilization during dynamic forearm exercise in normal subjects and patients with congestive heart failure. Circulation 50(1):137–143, 1974.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Laboratorio de Medios e Interfases (LAMEIN)-Departamento de Bioingeniería, Facultad de Ciencias Exactas y TecnologíaUniversidad Nacional de TucumánTucumánArgentina
  2. 2.Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y TécnicasTucumánArgentina
  3. 3.Laboratorio de Investigaciones Cardiovasculares Multidisciplinarias-Departamento de Bioingeniería, Facultad de Ciencias Exactas y TecnologíaUniversidad Nacional de TucumánTucumánArgentina
  4. 4.Departamento de Ing. Eléctrica, Electrónica y Computación, Facultad de Ciencias Exactas y TecnologíaUniversidad Nacional de TucumánTucumánArgentina
  5. 5.Instituto de CardiologíaTucumánArgentina

Personalised recommendations