Cardiovascular Engineering and Technology

, Volume 10, Issue 4, pp 553–567 | Cite as

Optimization Framework for Patient-Specific Cardiac Modeling

  • Joshua Mineroff
  • Andrew D. McCulloch
  • David Krummen
  • Baskar Ganapathysubramanian
  • Adarsh KrishnamurthyEmail author



Patient-specific models of the heart can be used to improve the diagnosis of cardiac diseases, but practical application of these models can be impeded by the computational costs and numerical uncertainties of fitting mechanistic models to clinical measurements from individual patients. Reliable and efficient tuning of these models within clinically appropriate error bounds is a requirement for practical deployment in the time-constrained environment of the clinic.


We developed an optimization framework to tune parameters of patient-specific mechanistic models using routinely-acquired non-invasive patient data more efficiently than manual methods. We employ a hybrid particle swarm and pattern search optimization algorithm, but the framework can be readily adapted to use other optimization algorithms.


We apply the proposed framework to tune full-cycle lumped parameter circulatory models using clinical data. We show that our framework can be easily adapted to optimize cross-species models by tuning the parameters of the same circulation model to four canine subjects.


This work will facilitate the use of biomechanics and circulatory cardiac models in both clinical and research environments by ameliorating the tedious process of manually fitting the parameters.


Optimization Cardiac biomechanics Lumped-parameter circulation model Patient-specific modeling 



This research was supported in part by the National Biomedical Computation Resource, NIH Grant 8 P41 GM103426-21 (Amaro and McCulloch), by the UC Center for Accelerated Innovation under NIH Grant 4 U54 HL11-9893, NIH Grant 1 R01 HL131753 (Segars, Krishnamurthy, McCulloch), by NSF Grant 1750865 (Krishnamurthy), and by the Joseph C. and Elizabeth A. Anderlik Professorship at Iowa State University (Mineroff). We would also like to show our gratitude to Dr. Judy Vance at Iowa State University for her extraordinary support.

Conflict of interest

Andrew D. McCulloch is a co-founder, equity holders and scientific advisory board member of Insilicomed Inc. and Vektor Medical, licensees of UCSD software used in this research. This relationship has been disclosed to the University of California San Diego and is overseen by an independent conflict of interest management subcommittee appointed by the university. Joshua Mineroff, David Krummen, Baskar Ganapathysubramanian, and Adarsh Krishnamurthy have declared that no competing interests exist.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

13239_2019_428_MOESM1_ESM.pdf (1.8 mb)
Electronic supplementary material 1 (PDF 1830 kb)


  1. 1.
    Aguado-Sierra J., A. Krishnamurthy, C. Villongco, J. Chuang, E. Howard, M. J. Gonzales, J. Omens, D. E. Krummen, S. Narayan, R. C. P. Kerckhoffs, and A. D. McCulloch. Patient-specific modeling of dyssynchronous heart failure: a case study. Prog. Biophys. Mol. Biol. 107(1):147–155, 2011.CrossRefGoogle Scholar
  2. 2.
    Arts, T., T. Delhaas, P. Bovendeerd, X. Verbeek, and F. W. Prinzen. Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am. J. Physiol. 288:H1943–H1954, 2005.Google Scholar
  3. 3.
    Augustin, C. M., A. Crozier, A. Neic, Prassl AJ, Karabelas E, Ferreira da Silva T, Fernandes JF, Campos F, Kuehne T, and G. Plank. Patient-specific modeling of left ventricular electromechanics as a driver for haemodynamic analysis. Europace 18:iv121–iv129, 2016.CrossRefGoogle Scholar
  4. 4.
    Baillargeon, B., N. Rebelo, D. D. Fox, R. L. Taylor, and E. Kuhl. The Living Heart Project: a robust and integrative simulator for human heart function. Eur. J. Mech. 48:38–47, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Balaban, G., M. S. Alnæs, J. Sundnes, and M. E. Rognes. Adjoint multi-start-based estimation of cardiac hyperelastic material parameters using shear data. Biomech. Model. Mechanobiol. 15(6), 1509–1521, 2016.CrossRefGoogle Scholar
  6. 6.
    Bols, J., J. Degroote, B. Trachet, B. Verhegghe, P. Segers, and J. Vierendeels. A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J. Comput. Appl. Math. 246:10–17, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Camara, O., T. Mansi, M. Pop, K. Rhode, M. Sermesant, and A. Young (eds). Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges. New York: Springer, 2014Google Scholar
  8. 8.
    Carapella, V., S. A. Niederer, P. Lamata, M. J. Bishop, J. E. Schneider, P. Kohl, and V. Grau. Images as drivers of progress in cardiac computational modelling. Prog. Biophys. Mol. Biol. 115:198–212, 2014.CrossRefGoogle Scholar
  9. 9.
    Chabiniok, R., P. Moireau, P. F. Lesault, A. Rahmouni, J. F. Deux, and D. Chapelle. Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech. Model. Mechanobiol. 11(5), 609–630, 2012.CrossRefGoogle Scholar
  10. 10.
    Chabiniok, R., V. Y. Wang, M. Hadjicharalambous, L. Asner, J. Lee, M. Sermesant, E. Kuhl, A. A. Young, P. Moireau, M. P. Nash, D. Chapelle, D. A. Nordsletten, and L. Mall. Multiphysics and multiscale modelling , data—model fusion and integration of organ physiology in the clinic : ventricular cardiac mechanics. Interface Focus, 2016. CrossRefGoogle Scholar
  11. 11.
    Clay, S., K. Alfakih, A. Radjenovic, T. Jones, J. P. Ridgway, and M. U. Sinvananthan. Normal range of human left ventricular volumes and mass using steady state free precession MRI in the radial long axis orientation. Mag. Resonance Mater. Phys. Biol. Med. 19(1), 41–45, 2006.CrossRefGoogle Scholar
  12. 12.
    CMRG. Continuity 6.4, 2015.Google Scholar
  13. 13.
    Ellwein, L. M., S. R. Pope, A. Xie, J. Batzel, C. T. Kelley, and M. S. Olufsen. Modeling cardiovascular and respiratory dynamics in congestive heart failure. Math. Biosci. 241:56–74, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ennis, D. B. Assessment of Myocardial Structure and Function Using Magnetic Resonance Imaging. PhD thesis, Johns Hopkins University, 2004Google Scholar
  15. 15.
    Hadjicharalambous, M., L. Asner, R. Chabiniok, E. Sammut, J. Wong, D. Peressutti, E. Kerfoot, A. King, J. Lee, R. Razavi, N. Smith, G. Carr-White, and D. Nordsletten. Non-invasive model-based assessment of passive left-ventricular myocardial stiffness in healthy subjects and in patients with non-ischemic dilated cardiomyopathy. Ann. Biomed. Eng. 45(3): 605–618, 2017.CrossRefGoogle Scholar
  16. 16.
    Heusinkveld, M., K. Reesink, T. Arts, W. Huberts, and T. Delhaas. Use of vascular adaptation in response to mechanical loading facilitates personalisation of a one-dimensional pulse wave propagation model. Artery Res. 20:79–80, 2009.CrossRefGoogle Scholar
  17. 17.
    Holzapfel, G. A., and R. W. Ogden Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. R. Soc. Ser. A 367(1902):3445–3475, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hooke, R., and T. A. Jeeves. “Direct search” solution of numerical and statistical problems. J. ACM 8(2):212–229, 1961.zbMATHCrossRefGoogle Scholar
  19. 19.
    Institute of Laboratory Animal Resources (ILAR). Guide for the Care and Use of Laboratory Animals. Washington, D.C.: National Academies Press, 1996Google Scholar
  20. 20.
    Kerckhoffs, R. C. P., J. Lumens, K. Vernooy, J. H. Omens, L. J. Mulligan, T. Delhaas, T. Arts, A. D. McCulloch, and F. W. Prinzen. Cardiac resynchronization: insight from experimental and computational models. Prog. Biophys. Mol. Biol. 97(2–3), 543–561, 2008.CrossRefGoogle Scholar
  21. 21.
    Klotz, S., I. Hay, M. L. Dickstein, G. H. Yi, J. Wang, M. S. Maurer, D. A. Kass, and D. Burkhoff. Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am. J. Physiol. 291(1):H403–H412, 2006.Google Scholar
  22. 22.
    Kovalova, S., J. Necas, and J. Vespalec. What is a “normal” right ventricle? Eur. J. Echocardiogr. 7(4):293–297, 2006.CrossRefGoogle Scholar
  23. 23.
    Krishnamurthy, A., B. Coppola, J. Tangney, R. C. P. Kerckhoffs, J. H. Omens, and A. D. McCulloch. A microstructurally based multi-scale constitutive model of active myocardial mechanics. In: Structure-Based Mechanics of Tissues and Organs. New York: Springer, chap 3, pp. 439–460, 2016.CrossRefGoogle Scholar
  24. 24.
    Krishnamurthy, A., C. Villingco, A. Beck, J. Omens, and A. McCulloch. Left ventricular diastolic and systolic material property estimation from image data: LV mechanics challenge. Stat. Atlases Comput. Model. Heart 8896:63–73, 2015.Google Scholar
  25. 25.
    Krishnamurthy, A., C. T. Villongco, J. Chuang, L. R. Frank, V. Nigam, E. Belezzuoli, P. Stark, D. E. Krummen, S. Narayan, J. H. Omens, A. D. McCulloch, R. C. P. Kerckhoffs. Patient-specific models of cardiac biomechanics. J. Comput. Phys. 244:4–21, 2013.CrossRefGoogle Scholar
  26. 26.
    Lang, R. M., M. Bierig, R. B. Devereux, F. A. Flachskampf, E. Foster, P. A. Pellikka, M. H. Picard, M. J. Roman, J. Seward, J. Shanewise, S. Solomon, K. T. Spencer, M. St John Sutton, and W. Stewart. Recommendations for chamber quantification. Eur. J. Echocardiogr. 7(2):79–108, 2006.CrossRefGoogle Scholar
  27. 27.
    Lim, E., S. Dokos, N. H. Lovell, S. L. Cloherty, R. F. Salamonsen, D. G. Mason, and J. A. Reizes. Parameter-optimized model of cardiovascular-rotary blood pump interactions. IEEE Trans. Biomed. Eng. 57(2):254–266, 2010.CrossRefGoogle Scholar
  28. 28.
    Marchesseau, S., H. Delingette, M. Sermesant, and N. Ayache. Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform. Biomech. Model. Mechanobiol. 12(4), 815–831, 2013.CrossRefGoogle Scholar
  29. 29.
    MathWorks. MATLAB R2017b, 2017Google Scholar
  30. 30.
    More, J. J., and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 39:2, 2009.MathSciNetzbMATHGoogle Scholar
  31. 31.
    Nasopoulou, A., A. Shetty, J. Lee, D. Nordsletten, C. A. Rinaldi, P. Lamata, and S. Niederer. Improved identifiability of myocardial material parameters by an energy-based cost function. Biomech. Model. Mechanobiol. 16(3), 971–988, 2017.CrossRefGoogle Scholar
  32. 32.
    Nauser, T. D., and S. W. Stites. Diagnosis and treatment of pulmonary hypertension. Am. Family Phys. 63(9):1789–1798, 2001.Google Scholar
  33. 33.
    Neal, M. L., and J. B. Bassingthwaighte. Subject-specific model estimation of cardiac output and blood volume during hemorrhage. Cardiovasc. Eng. 7(3):97–120, 2007.CrossRefGoogle Scholar
  34. 34.
    Niederer, S. A., M. Fink, D. Noble, and N. P. Smith. A meta-analysis of cardiac electrophysiology computational models. Exp. Physiol. 94(5):486–495, 2009.CrossRefGoogle Scholar
  35. 35.
    Piper, M. A., C. V. Evans, B. U. Burda, K. L. Margolis, E. O’Connor, and E. P. Whitlock. Diagnostic and predictive accuracy of blood pressure screening methods with consideration of rescreening intervals: a systematic review for the U.S. Preventive Services Task Force. Ann. Int. Med. 162(3):192–204, 2015.CrossRefGoogle Scholar
  36. 36.
    Raamat, R., J. Talts, K. Jagomägi, and J. Kivastik. Accuracy of some algorithms to determine the oscillometric mean arterial pressure: a theoretical study. Blood Press. Monit. 18:50–56, 2013.CrossRefGoogle Scholar
  37. 37.
    Sellier, M. An iterative method for the inverse elasto-static problem. J. Fluid. Struct. 27(8):1461–1470, 2011.CrossRefGoogle Scholar
  38. 38.
    Shi, Y., and R. Eberhart. A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation, pp. 69–73, 1998.Google Scholar
  39. 39.
    Shortliffe, E. H., B. G. Buchanan, and E. A. Feigenbaum. Knowledge engineering for medical decision making: a review of computer-based clinical decision aids. Tech. Rep., Stanford University Computer Science Department, 1979.Google Scholar
  40. 40.
    Tange, O. GNU parallel---the command-line power tool. login USENIX Mag. 36(1):42–47, 2011Google Scholar
  41. 41.
    Vaz, A. I. F., and L. N. Vicente. A particle swarm pattern search method for bound constrained global optimization. J. Glob. Optim. 39(2):197–219, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Wang, V. Y., H. I. Lam, D. B. Ennis, B. R. Cowan, A. A. Young, and M. P. Nash. Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med. Image Anal. 13(5):773–784, 2009.CrossRefGoogle Scholar
  43. 43.
    Wang, V. Y., P. M. F. Nielsen, and M. P. Nash. Image-based predictive modeling of heart mechanics. Ann. Rev. Biomed. Eng. 17:351–383, 2015.CrossRefGoogle Scholar
  44. 44.
    Xi, J., P. Lamata, S. Niederer, S. Land, W. Shi, X. Zhuang, S. Ourselin, S. G. Duckett, A. K. Shetty, C. A. Rinaldi, D. Rueckert, R. Razavi, and N. P. Smith. The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17(2):133–146, 2013.CrossRefGoogle Scholar
  45. 45.
    Yoshimura, M., H. Yasue, K. Okumura, H. Ogawa, M. Jougasaki, M. Mukoyama, K. Nakao, and H. Imura. Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure. Circulation 87(2):464–469, 1993.CrossRefGoogle Scholar
  46. 46.
    Zoghbi, W. A. Quantifying valvular regurgitation. In: ACC Middle East Conference, 2016.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIowa State UniversityAmesUSA
  2. 2.Bioengineering and MedicineUniversity of California, San DiegoLa JollaUSA
  3. 3.Department of Medicine (Cardiology)University of California, San DiegoLa JollaUSA

Personalised recommendations