Cardiovascular Engineering and Technology

, Volume 10, Issue 2, pp 314–328 | Cite as

Experimental Insight into the Hemodynamics and Perfusion of Radiological Contrast in Patent and Non-patent Aortic Dissection Models

  • Elie Salameh
  • Charbel Saade
  • Ghanem F. OweisEmail author



In a curved vessel such as the aortic arch, the velocity profile closer to the aortic root is normally skewed towards the inner curvature wall, while further downstream along the curve, the velocity profile becomes skewed towards the outer wall. In an aortic dissection (AD) disease, blood velocities in the true lumen (TL) and false lumen (FL) are hypothesized to depend on the proximity of the entry tear to the root of aortic arch. Faster velocity in the FL can lead to higher hemodynamic loading, and pose tearing risk. Furthermore, the luminal velocities control the perfusion rate of radiological contrast media during diagnostic imaging. The objective in this study is to investigate the effect of AD disease morphology and configuration on the blood velocity field in the TL and FL, and on the relative perfusion of radiological enhancement agents through the dissection.


Eight in vitro models were studied, including patent and non-patent FL configurations. Particle image velocimetry (PIV) was used to quantify the AD velocity field, while laser-induced fluorescence (LIF) was implemented to visualize dynamical flow phenomena and to quantify the perfusion of injected dye, in mimicry of contrast-enhanced computed tomography (CT).


The location of the proximal entry tear along the aortic arch in a patent FL had a dramatic impact on whether the blood velocity was higher in the TL or FL. The luminal velocities were dependent on the entry/reentry tear size combination, with the smaller tear (whether distal or proximal) setting the upper limit on the maximal flow velocity in the FL. Upon merging near the distal reentry tear, the TL/FL velocity differential gave rise to the roll up and shedding of shear layer vortices that convected downstream in close proximity to the wall of the non-dissected aorta. In a non-patent FL, the flow velocity was practically null with all the blood passing through the TL. LIF imaging showed much slower perfusion of contrast dye in the FL compared to the TL. In a patent FL, however, dye had a comparable perfusion rate appearing around the same time as in the TL.


Blood velocities in the TL and FL were highly sensitive to the exact dissection configuration. Geometric case A1R, which had its proximal entry tear located further downstream along the aortic arch, and had its entry and reentry tears sufficiently sized, exhibited the highest FL flow velocity among the tested models, and it was also higher than in the TL, which suggest that this configuration had elevated hemodynamic loading and risk for tearing. In contrast-enhanced diagnostic imaging, a time-delayed acquisition protocol is recommended to improve the detection of suspected cases with a non-patent FL.


Patent false lumen Stanford type A PIV LIF Shear layer vortex Contrast computed X-ray tomography (CT) Magnetic resonance (MR) Tear propagation 



Mr. J. Zullikian and Mr. J. Nassif performed the CNC machining of the models. Initial development of this study took place in the experimental fluid dynamics MECH-609 course given in 2016 at AUB. GFO thanks his sabbatical host Prof. S.L. Ceccio at the U. Michigan where the writing of this manuscript was completed. Feedback from the anonymous reviewers is highly appreciated.


Support was provided by an internal grant from the AUB University Research Board.

Conflict of interest

Elie Salameh declares that he has no conflict of interest. Charbel Saade has received research funding from GE healthcare USA. Ghanem Oweis declares that he has no conflict of interest.

Ethical Approval

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article. No cell culture studies were carried out by the authors for this article.

Supplementary material

13239_2019_407_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (AVI 227,917 kb)

Supplementary material 3 (AVI 227,917 kb)

Supplementary material 4 (MOV 8739 kb)

Supplementary material 5 (MOV 27,858 kb)


  1. 1.
    Ab Naim, W. N., P. B. Ganesan, Z. Sun, Y. M. Liew, Y. Qian, C. J. Lee, S. Jansen, S. A. Hashim, and E. Lim. Prediction of thrombus formation using vortical structures presentation in Stanford type B aortic dissection: a preliminary study using CFD approach. Appl. Math. Modell. 40(4):3115–3127, 2016.CrossRefGoogle Scholar
  2. 2.
    Abbas, A., I. W. Brown, C. R. Peebles, S. P. Harden, and J. S. Shambrook. The role of multidetector-row CT in the diagnosis, classification and management of acute aortic syndrome. Br. J. Radiol. 87(1042):20140354, 2014.CrossRefGoogle Scholar
  3. 3.
    Ahmed, S. B., D. Dillon-Murphy, and C. A. Figueroa. Computational study of anatomical risk factors in idealized models of type B aortic dissection. Eur. J. Vasc. Endovasc. Surg. 52(6):736–745, 2016.CrossRefGoogle Scholar
  4. 4.
    Alloush, M. M., G. F. Oweis, and R. Nasr. Computational study of anatomical risk factors in idealized models of type B aortic dissection. Eur. J. Vasc. Endovasc. Surg. 52(6):736–745, 2016.CrossRefGoogle Scholar
  5. 5.
    Asouhidou, I., and T. Asteri. Acute aortic dissection: be aware of misdiagnosis. BMC Res. Notes 2(1):25, 2009.CrossRefGoogle Scholar
  6. 6.
    Berger, S. A., L. Talbot, and L. S. Yao. Flow in curved pipes. Annu. Rev. Fluid Mech. 15(1):461–512, 1983.zbMATHCrossRefGoogle Scholar
  7. 7.
    Birjiniuk, J., L. H. Timmins, M. Young, B. G. Leshnower, J. N. Oshinski, D. N. Ku, and R. K. Veeraswamy. Pulsatile flow leads to intimal flap motion and flow reversal in an in vitro model of type B aortic dissection. Cardiovasc. Eng. Technol. 8(3):378–389, 2017.CrossRefGoogle Scholar
  8. 8.
    Canchi, S., X. Guo, M. Phillips, Z. Berwick, J. Kratzberg, J. Krieger, B. Roeder, S. Haulon, S. Chambers, and G. S. Kassab. Role of re-entry tears on the dynamics of type B dissection flap. Ann. Biomed. Eng. 46(1):186–196, 2018.CrossRefGoogle Scholar
  9. 9.
    Cavalcante, J. L., J. A. C. Lima, A. Redheuil, and M. H. Al-Mallah. Aortic stiffness: current understanding and future directions. J. Am. Coll. Cardiol. 57(14):1511–1522, 2011.CrossRefGoogle Scholar
  10. 10.
    Cebral, J., E. Ollikainen, B. J. Chung, F. Mut, V. Sippola, B. R. Jahromi, R. Tulamo, et al. Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. Am. J. Neuroradiol. 38:119, 2016.CrossRefGoogle Scholar
  11. 11.
    Cecchi, E., C. Giglioli, S. Valente, C. Lazzeri, G. F. Gensini, R. Abbate, and L. Mannini. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 214(2):249–256, 2011.CrossRefGoogle Scholar
  12. 12.
    Cheng, Z., F. P. P. Tan, C. V. Riga, C. D. Bicknell, M. S. Hamady, R. G. J. Gibbs, N. B. Wood, and X. Y. Xu. Analysis of flow patterns in a patient-specific aortic dissection model. J. Biomech. Eng. 132(5):051007, 2010.CrossRefGoogle Scholar
  13. 13.
    Clough, R. E., T. Hussain, S. Uribe, G. F. Greil, R. Razavi, P. R. Taylor, T. Schaeffter, and M. Waltham. A new method for quantification of false lumen thrombosis in aortic dissection using magnetic resonance imaging and a blood pool contrast agent. J. Vasc. Surg. 54(5):1251–1258, 2011.CrossRefGoogle Scholar
  14. 14.
    Clough, R. E., M. Waltham, D. Giese, P. R. Taylor, and T. Schaeffter. A new imaging method for assessment of aortic dissection using four-dimensional phase contrast magnetic resonance imaging. J. Vasc. Surg. 55(4):914–923, 2012.CrossRefGoogle Scholar
  15. 15.
    Dyverfeldt, P., J. P. Kvitting, A. Sigfridsson, J. Engvall, A. F. Bolger, and T. Ebbers. Assessment of fluctuating velocities in disturbed cardiovascular blood flow: in vivo feasibility of generalized phase‐contrast MRI. J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med. 28(3):655–663, 2008.CrossRefGoogle Scholar
  16. 16.
    Endo, S., H. L. Goldsmith, and T. Karino. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta–I. Aortic arch. Biorheology 51(4–5):239–255, 2014.Google Scholar
  17. 17.
    Evangelista, A., A. Salas, A. Ribera, I. Ferreira-González, H. Cuellar, V. Pineda, T. González-Alujas, B. Bijnens, G. Permanyer-Miralda, and D. Garcia-Dorado. Long-term outcome of aortic dissection with patent false lumen: predictive role of entry tear size and location. Circulation 125:3133, 2012.CrossRefGoogle Scholar
  18. 18.
    Fojtik, J. P., T. G. Costantino, and A. J. Dean. The diagnosis of aortic dissection by emergency medicine ultrasound. J. Emerg. Med. 32(2):191–196, 2007.CrossRefGoogle Scholar
  19. 19.
    Golledge, J., and K. A. Eagle. Acute aortic dissection. Lancet 372(9632):55–66, 2008.CrossRefGoogle Scholar
  20. 20.
    Hatzaras, I., M. Tranquilli, M. Coady, P. M. Barrett, J. Bible, and J. A. Elefteriades. Weight lifting and aortic dissection: more evidence for a connection. Cardiology 107(2):103–106, 2007.CrossRefGoogle Scholar
  21. 21.
    Hayter, R. G., J. T. Rhea, A. Small, F. S. Tafazoli, and R. A. Novelline. Suspected aortic dissection and other aortic disorders: multi–detector row CT in 373 cases in the emergency setting. Radiology 238(3):841–852, 2006.CrossRefGoogle Scholar
  22. 22.
    Hellström, L. H., M. B. Zlatinov, G. Cao, and A. J. Smits. Turbulent pipe flow downstream of a 90° bend. J. Fluid Mech. 2013. Scholar
  23. 23.
    Hille, P., R. Vehrenkamp, and E. O. Schulz-Dubois. The development and structure of primary and secondary flow in a curved square duct. J. Fluid Mech. 151:219–241, 1985.CrossRefGoogle Scholar
  24. 24.
    Hope, T. A., M. Markl, L. Wigström, M. T. Alley, D. C. Miller, and R. J. Herfkens. Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J. Magn. Reson. Imaging 26(6):1471–1479, 2007.CrossRefGoogle Scholar
  25. 25.
    Husainy, M. A., F. Sayyed, and S. Puppala. Acute aortic syndrome—pitfalls on gated and non-gated CT scan. Emerg. Radiol. 23(4):397–403, 2016.CrossRefGoogle Scholar
  26. 26.
    Karasso, P. S., and M. G. Mungal. Scalar mixing and reaction in plane liquid shear layers. J. Fluid Mech. 323:23–63, 1996.CrossRefGoogle Scholar
  27. 27.
    Karmonik, C., J. Bismuth, D. J. Shah, M. G. Davies, D. Purdy, and A. B. Lumsden. Computational study of haemodynamic effects of entry-and exit-tear coverage in a DeBakey type III aortic dissection: technical report. Eur. J. Vasc. Endovasc. Surg. 42(2):172–177, 2011.CrossRefGoogle Scholar
  28. 28.
    Karmonik, C., S. Partovi, M. Müller-Eschner, J. Bismuth, M. G. Davies, D. J. Shah, M. Loebe, D. Böckler, A. B. Lumsden, and H. von Tengg-Kobligk. Longitudinal computational fluid dynamics study of aneurysmal dilatation in a chronic DeBakey type III aortic dissection. J. Vasc. Surg. 56(1):260–263, 2012.CrossRefGoogle Scholar
  29. 29.
    Khanafer, K., and R. Berguer. Fluid–structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection. J. Biomech. 42(16):2642–2648, 2009.CrossRefGoogle Scholar
  30. 30.
    Knollmann, F. D., J. M. Lacomis, I. Ocak, and T. Gleason. The role of aortic wall CT attenuation measurements for the diagnosis of acute aortic syndromes. Eur. J. Radiol. 82(12):2392–2398, 2013.CrossRefGoogle Scholar
  31. 31.
    Krishna, C. V., N. Gundiah, and J. H. Arakeri. Separations and secondary structures due to unsteady flow in a curved pipe. J. Fluid Mech. 815:26–59, 2017.CrossRefGoogle Scholar
  32. 32.
    Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29(1):399–434, 1997.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kurabayashi, M., N. Miwa, D. Ueshima, K. Sugiyama, K. Yoshimura, Ta Shimura, H. Aoyagi, K. Azegami, K. Okishige, and M. Isobe. Factors leading to failure to diagnose acute aortic dissection in the emergency room. J. Cardiol. 58(3):287–293, 2011.CrossRefGoogle Scholar
  34. 34.
    Kurabayashi, M., K. Okishige, D. Ueshima, K. Yoshimura, T. Shimura, H. Suzuki, A. Mitsutoshi, H. Aoyagi, Y. Otani, and M. Isobe. Diagnostic utility of unenhanced computed tomography for acute aortic syndrome. Circ. J. 78(8):1928–1934, 2014.CrossRefGoogle Scholar
  35. 35.
    Le Blanc-Louvry, I., S. Thureau, K. Ledoux, B. Mogdad, E. Lagroy, J. N. Dacher, and G. Tournel. False positive aortic dissection on postmortem computed tomography. Forensic Sci. Int. 254:e4–e6, 2015.CrossRefGoogle Scholar
  36. 36.
    Ledneva, E., S. Karie, V. Launay-Vacher, N. Janus, and G. Deray. Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency 1. Radiology 250(3):618–628, 2009.CrossRefGoogle Scholar
  37. 37.
    Lee, H.-Y., and O. Byung-Hee. Aging and arterial stiffness. Circ. J. 74(11):2257–2262, 2010.CrossRefGoogle Scholar
  38. 38.
    Liu, X., P. Fang, Y. Fan, X. Deng, D. Li, and Sh Li. A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am. J. Physiol. Heart Circ. Physiol. 297(1):H163–H170, 2009.CrossRefGoogle Scholar
  39. 39.
    Liu, Q., J. P. Lu, F. Wang, L. Wang, and J. M. Tian. Three-dimensional contrast-enhanced MR angiography of aortic dissection: a pictorial essay. Radiographics 27(5):1311–1321, 2007.CrossRefGoogle Scholar
  40. 40.
    London, G. M., and A. P. Guerin. Influence of arterial pulse and reflected waves on blood pressure and cardiac function. Am. Heart J. 138(3):S220–S224, 1999.CrossRefGoogle Scholar
  41. 41.
    Markl, M., P. J. Kilner, and T. Ebbers. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13(1):7, 2011.CrossRefGoogle Scholar
  42. 42.
    McMahon, M. A., and C. A. Squirrell. Multidetector CT of aortic dissection: a pictorial review. Radiographics 30(2):445–460, 2010.CrossRefGoogle Scholar
  43. 43.
    Nagpal, P., A. Khandelwal, S. S. Saboo, G. Bathla, M. L. Steigner, and F. J. Rybicki. Modern imaging techniques: applications in the management of acute aortic pathologies. Postgrad. Med. J. 91:449, 2015.CrossRefGoogle Scholar
  44. 44.
    Nagra, K., R. Coulden, and M. S. McMurtry. A type A aortic dissection missed by non-cardiac gated contrast-enhanced computed tomography due to an aortic root dissection flap masquerading as an aortic valve apparatus: a case report. J. Med. Case Rep. 7(1):285, 2013.CrossRefGoogle Scholar
  45. 45.
    Neema, P Kumar. Acute aortic dissection: pitfalls in the diagnosis. Ann. Card. Anaesth. 16(2):83, 2013.CrossRefGoogle Scholar
  46. 46.
    Oweis, G. F., and S. L. Ceccio. Instantaneous and time-averaged flow fields of multiple vortices in the tip region of a ducted propulsor. Exp. Fluids 38(5):615–636, 2005.CrossRefGoogle Scholar
  47. 47.
    Raymond, C. E., B. Aggarwal, P. Schoenhagen, D. M. Kralovic, K. Kormos, D. Holloway, and V. Menon. Prevalence and factors associated with false positive suspicion of acute aortic syndrome: experience in a patient population transferred to a specialized aortic treatment center. Cardiovasc. Diagn. Ther. 3(4):196, 2013.Google Scholar
  48. 48.
    Rinaudo, A., G. D’Ancona, J. J. Lee, G. Pilato, A. Amaducci, R. Baglini, F. Follis, M. Pilato, and S. Pasta. Predicting outcome of aortic dissection with patent false lumen by computational flow analysis. Cardiovasc. Eng. Technol. 5(2):176–188, 2014.CrossRefGoogle Scholar
  49. 49.
    Rindt, C. C. M., A. A. Van Steenhoven, J. D. Janssen, and G. Vossers. Unsteady entrance flow in a 90 curved tube. J. Fluid Mech. 226:445–474, 1991.CrossRefGoogle Scholar
  50. 50.
    Rudenick, P. A., B. H. Bijnens, D. García-Dorado, and A. Evangelista. An in vitro phantom study on the influence of tear size and configuration on the hemodynamics of the lumina in chronic type B aortic dissections. J. Vasc. Surg. 57(2):464–474, 2013.CrossRefGoogle Scholar
  51. 51.
    Saade, C., R. Bourne, M. Wilkinson, M. Evanoff, and P. Brennan. A reduced contrast volume acquisition regimen based on cardiovascular dynamics improves visualisation of head and neck vasculature with carotid MDCT angiography. Eur. J. Radiol. 82(2):e64–e69, 2013.CrossRefGoogle Scholar
  52. 52.
    Salvolini, L., P. Renda, D. Fiore, M. Scaglione, G. P. Piccoli, and A. Giovagnoni. Acute aortic syndromes: role of multi-detector row CT. Eur. J. Radiol. 65(3):350–358, 2008.CrossRefGoogle Scholar
  53. 53.
    Shi, Y., Y. M. Zhu, Hua Q Chang, and Y. Liu. The risk of stanford type-A aortic dissection with different tear size and location: a numerical study. Biomed. Eng. Online 15(2):128, 2016.CrossRefGoogle Scholar
  54. 54.
    Siegal, E. M. Acute aortic dissection. J. Hosp. Med. 1(2):94–105, 2006.CrossRefGoogle Scholar
  55. 55.
    Soudah, E., P. Rudenick, M. Bordone, B. Bijnens, D. García-Dorado, A. Evangelista, and E. Oñate. Validation of numerical flow simulations against in vitro phantom measurements in different type B aortic dissection scenarios. Comput. Methods Biomech. Biomed. Eng. 18(8):805–815, 2015.CrossRefGoogle Scholar
  56. 56.
    Stevens, M. C., F. M. Callaghan, P. Forrest, P. G. Bannon, and S. M. Grieve. Flow mixing during peripheral veno-arterial extra corporeal membrane oxygenation–a simulation study. J. Biomech. 55:64–70, 2017.CrossRefGoogle Scholar
  57. 57.
    Thielicke, W., and E. Stamhuis. PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2(1):30, 2014.Google Scholar
  58. 58.
    Tsai, T. T., A. Evangelista, C. A. Nienaber, T. Myrmel, G. Meinhardt, J. V. Cooper, D. E. Smith, et al. Partial thrombosis of the false lumen in patients with acute type B aortic dissection. N. Engl. J. Med. 357(4):349–359, 2007.CrossRefGoogle Scholar
  59. 59.
    Tsai, T. T., M. S. Schlicht, K. Khanafer, J. L. Bull, D. T. Valassis, D. M. Williams, Ramon Berguer, and K. A. Eagle. Tear size and location impacts false lumen pressure in an ex vivo model of chronic type B aortic dissection. J. Vasc. Surg. 47(4):844–851, 2008.CrossRefGoogle Scholar
  60. 60.
    Tsai, T. T., S. Trimarchi, and C. A. Nienaber. Acute aortic dissection: perspectives from the international registry of acute aortic dissection (IRAD). Eur. J. Vasc. Endovasc. Surg. 37(2):149–159, 2009.CrossRefGoogle Scholar
  61. 61.
    Tse, K. M., P. Chiu, H. P. Lee, and P. Ho. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J. Biomech. 44(5):827–836, 2011.CrossRefGoogle Scholar
  62. 62.
    Vantine, P. R., J. K. Rosenblum, W. G. Schaeffer, K. T. Williams, D. W. Dockray, J. M. Levsky, L. B. Haramati, and L. H. Ketai. Can non-contrast-enhanced CT (NECT) triage patients suspected of having non-traumatic acute aortic syndromes (AAS)? Emerg. Radiol. 22(1):19–24, 2015.CrossRefGoogle Scholar
  63. 63.
    Zhu, C., J.-H. Seo, and Rajat Mittal. Computational modelling and analysis of haemodynamics in a simple model of aortic stenosis. J. Fluid Mech. 851:23–49, 2018.MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Ziegler, M., J. Lantz, T. Ebbers, and P. Dyverfeldt. Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI. Magn. Reson. Med. 77(6):2310–2319, 2017.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, M.S. Faculty of Engineering & ArchitectureAmerican University of BeirutBeirutLebanon
  2. 2.Medical Imaging Sciences, Faculty of Health SciencesAmerican University of BeirutBeirutLebanon

Personalised recommendations