Advertisement

Tricuspid Valve Annular Mechanics: Interactions with and Implications for Transcatheter Devices

  • Shelly Singh-Gryzbon
  • Andrew W. Siefert
  • Eric L. Pierce
  • Ajit P. YoganathanEmail author
Article

Abstract

In the interventional treatment of tricuspid valve regurgitation, the majority of prosthetic devices interact with or are implanted to the tricuspid valve annulus. For new transcatheter technologies, there exists a growing body of clinical experience, literature, and professional discourse related to the difficulties in delivering, securing, and sustaining the function of these devices within the dynamic tricuspid annulus. Many of the difficulties arise from circumstances not encountered in open-heart surgery, namely; a non-arrested heart, indirect visualization, and a reliance on non-suture-based methods. These challenges require the application of procedural techniques or system designs to account for tricuspid annular motion, forces, and underlying tissue strength. Improved knowledge in these interactions will support the goals of improving device systems, their procedures, and patient outcomes. This review aims to describe current concepts of tricuspid annular mechanics, key device and procedural implications, and highlight current knowledge gaps for future consideration.

Keywords

Tricuspid regurgitation Percutaneous repair Transcatheter devices Annular biomechanics 

Abbreviations

AVN

Atrioventricular node

RA

Right atrium

RCA

Right coronary artery

RV

Right ventricle

TTVD

Transcatheter tricuspid valve device

TV

Tricuspid valve

Notes

Acknowledgments

The authors would like to acknowledge the histological work performed by Dr. Renu Virmani of CV Path in Gaithersburg, Maryland.

Compliance with Ethical Standards

Conflict of interest

Shelly Singh-Gryzbon, Eric L. Pierce and Ajit P. Yoganathan have no conflicts of interest relevant to this review article. Andrew W. Siefert is an employee of Cardiac Implants LLC.

Ethical Approval

No human or animal studies were carried out by the authors for this article.

References

  1. 1.
    Abdelghani, M., J. Schofer, and O. I. Soliman. Transcatheter interventions for tricuspid regurgitation: rationale, overview of current technologies, and future perspectives. Practical manual of tricuspid valve diseases. Berlin: Springer, pp. 353–377, 2018.Google Scholar
  2. 2.
    Addetia, K., D. Muraru, F. Veronesi, C. Jenei, G. Cavalli, S. A. Besser, et al. 3-Dimensional echocardiographic analysis of the tricuspid annulus provides new insights into tricuspid valve geometry and dynamics. JACC Cardiovasc. Imaging. 20:17, 2017.  https://doi.org/10.1016/j.jcmg.2017.08.022.Google Scholar
  3. 3.
    Al Aloul, B., G. Sigurdsson, I. Can, J. M. Li, R. Dykoski, and V. N. Tholakanahalli. Proximity of right coronary artery to cavotricuspid isthmus as determined by computed tomography. Pacing Clin. Electrophysiol. 33(11):1319–1323, 2010.  https://doi.org/10.1111/j.1540-8159.2010.02844.x.Google Scholar
  4. 4.
    Anwar, A. M., O. I. Soliman, A. Nemes, R. J. van Geuns, M. L. Geleijnse, and F. J. Ten Cate. Value of assessment of tricuspid annulus: real-time three-dimensional echocardiography and magnetic resonance imaging. Int. J. Cardiovasc. Imaging 23(6):701–705, 2007.  https://doi.org/10.1007/s10554-006-9206-4.Google Scholar
  5. 5.
    Asmarats, L., R. Puri, A. Latib, J. L. Navia, and J. Rodes-Cabau. Transcatheter tricuspid valve interventions: landscape, challenges, and future directions. J. Am. Coll. Cardiol. 71(25):2935–2956, 2018.  https://doi.org/10.1016/j.jacc.2018.04.031.Google Scholar
  6. 6.
    Basu, A., and Z. He. Annulus tension on the tricuspid valve: an in-vitro study. Cardiovasc. Eng. Technol. 7(3):270–279, 2016.  https://doi.org/10.1007/s13239-016-0267-9.Google Scholar
  7. 7.
    Campelo-Parada, F., O. Lairez, and D. Carrié. Percutaneous treatment of the tricuspid valve disease: new hope for the “forgotten” valve. Rev. Esp. Cardiol. 70(10):856–866, 2017.Google Scholar
  8. 8.
    Carpentier, A., D. H. Adams, and F. Filsoufi. Carpentier’s reconstructive valve surgery e-book. Amstrerdam: Elsevier Health Sciences, 2011.Google Scholar
  9. 9.
    Chan, J. L., M. Li, D. Mazilu, J. G. Miller, A. C. Diaconescu, and K. A. Horvath. Novel direct annuloplasty fastener system for minimally invasive mitral valve repair. Cardiovasc. Eng. Technol. 9(1):53–59, 2018.Google Scholar
  10. 10.
    Diez-Villanueva, P., E. Gutierrez-Ibanes, G. P. Cuerpo-Caballero, R. Sanz-Ruiz, M. Abeytua, J. Soriano, et al. Direct injury to right coronary artery in patients undergoing tricuspid annuloplasty. Ann. Thorac. Surg. 97(4):1300–1305, 2014.  https://doi.org/10.1016/j.athoracsur.2013.12.021.Google Scholar
  11. 11.
    Fawzy, H., K. Fukamachi, C. D. Mazer, A. Harrington, D. Latter, D. Bonneau, et al. Complete mapping of the tricuspid valve apparatus using three-dimensional sonomicrometry. J. Thorac. Cardiovasc. Surg. 141(4):1037–1043, 2011.  https://doi.org/10.1016/j.jtcvs.2010.05.039.Google Scholar
  12. 12.
    Fukuda, S., G. Saracino, Y. Matsumura, M. Daimon, H. Tran, N. L. Greenberg, et al. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation 114(1 Suppl):I492–I498, 2006.  https://doi.org/10.1161/CIRCULATIONAHA.105.000257.Google Scholar
  13. 13.
    Granada, J. F., and T. Vahl. Catheter-based intervention of the “forgotten” valve: time to reconsider tricuspid valve intervention? JACC Basic. Transl. Sci. 3(1):80–82, 2018.  https://doi.org/10.1016/j.jacbts.2018.01.009.Google Scholar
  14. 14.
    Hahn, R. T. Tricuspid annular morphology: focus on the forgotten. JACC Cardiovasc. Imaging. 2018.  https://doi.org/10.1016/j.jcmg.2017.11.042.Google Scholar
  15. 15.
    Hiro, M. E., J. Jouan, M. R. Pagel, E. Lansac, K. H. Lim, H. S. Lim, et al. Sonometric study of the normal tricuspid valve annulus in sheep. J. Heart Valve Dis. 13(3):452–460, 2004.Google Scholar
  16. 16.
    ISO. ISO 5910:2018 Cardiovascular implants and extracorporeal systems—cardiac valve repair devices. Geneva: International Standards Organization, 2018.Google Scholar
  17. 17.
    Jazwiec, T., M. Malinowski, A. G. Proudfoot, L. Eberhart, D. Langholz, H. Schubert, et al. Tricuspid valvular dynamics and 3-dimensional geometry in awake and anesthetized sheep. J. Thorac. Cardiovasc. Surg. 20:18, 2018.  https://doi.org/10.1016/j.jtcvs.2018.04.065.Google Scholar
  18. 18.
    Jones-Haywood, M. M., C. Combs, M. Pu, S. K. Gandhi, R. Dhawan, and D. K. Tempe. Percutaneous closure of mitral paravalvular leak. J. Cardiothorac. Vasc. Anesth. 27(1):168–177, 2013.  https://doi.org/10.1053/j.jvca.2012.07.006.Google Scholar
  19. 19.
    Jouan, J., M. R. Pagel, M. E. Hiro, K. H. Lim, E. Lansac, and C. M. Duran. Further information from a sonometric study of the normal tricuspid valve annulus in sheep: geometric changes during the cardiac cycle. J. Heart Valve Dis. 16(5):511–518, 2007.Google Scholar
  20. 20.
    Kawada, N., H. Naganuma, K. Muramatsu, H. Ishibashi-Ueda, K. Bando, and K. Hashimoto. Redefinition of tricuspid valve structures for successful ring annuloplasty. J. Thorac. Cardiovasc. Surg. 20:17, 2017.  https://doi.org/10.1016/j.jtcvs.2017.12.045.Google Scholar
  21. 21.
    Khan, J. M., T. Rogers, W. H. Schenke, A. B. Greenbaum, V. C. Babaliaros, G. Paone, et al. Transcatheter pledget-assisted suture tricuspid annuloplasty (PASTA) to create a double-orifice valve. Catheter Cardiovasc Interv 20:18, 2018.  https://doi.org/10.1002/ccd.27531.Google Scholar
  22. 22.
    Kong, F., T. Pham, C. Martin, R. McKay, C. Primiano, S. Hashim, et al. Finite element analysis of tricuspid valve deformation from multi-slice computed tomography images. Ann. Biomed. Eng. 2018.  https://doi.org/10.1007/s10439-018-2024-8.Google Scholar
  23. 23.
    Kragsnaes, E. S., J. L. Honge, J. B. Askov, J. M. Hasenkam, H. Nygaard, S. L. Nielsen, et al. In-plane tricuspid valve force measurements: development of a strain gauge instrumented annuloplasty ring. Cardiovasc. Eng. Technol. 4(2):131–138, 2013.  https://doi.org/10.1007/s13239-013-0135-9.Google Scholar
  24. 24.
    Kuwata, S., M. Taramasso, F. Nietlispach, and F. Maisano. Transcatheter tricuspid valve repair toward a surgical standard: first-in-man report of direct annuloplasty with a cardioband device to treat severe functional tricuspid regurgitation. Eur. Heart J. 38(16):1261, 2017.  https://doi.org/10.1093/eurheartj/ehw660.Google Scholar
  25. 25.
    Latib, A., and A. Mangieri. Transcatheter tricuspid valve repair: new valve, new opportunities. New challenges. J. Am. Coll. Cardiol. 69(14):1807–1810, 2017.  https://doi.org/10.1016/j.jacc.2017.02.016.Google Scholar
  26. 26.
    Levack, M. M., M. Vergnat, A. T. Cheung, M. A. Acker, R. C. Gorman, and J. H. Gorman, 3rd. Annuloplasty ring dehiscence in ischemic mitral regurgitation. Ann. Thorac. Surg. 94(6):2132, 2012.  https://doi.org/10.1016/j.athoracsur.2012.04.051.Google Scholar
  27. 27.
    Madukauwa-David, I. D., E. L. Pierce, F. Sulejmani, J. Pataky, W. Sun, and A. P. Yoganathan. Suture dehiscence and collagen content in the human mitral and tricuspid annuli. Biomech. Model. Mechanobiol. 1:9, 2018.  https://doi.org/10.1007/s10237-018-1082-z.Google Scholar
  28. 28.
    Maffessanti, F., P. Gripari, G. Pontone, D. Andreini, E. Bertella, S. Mushtaq, et al. Three-dimensional dynamic assessment of tricuspid and mitral annuli using cardiovascular magnetic resonance. Eur. Heart J. Cardiovasc. Imaging. 14(10):986–995, 2013.  https://doi.org/10.1093/ehjci/jet004.Google Scholar
  29. 29.
    Mahmood, F., H. Kim, B. Chaudary, R. Bergman, R. Matyal, J. Gerstle, et al. Tricuspid annular geometry: a three-dimensional transesophageal echocardiographic study. J. Cardiothorac. Vasc. Anesth. 27(4):639–646, 2013.  https://doi.org/10.1053/j.jvca.2012.12.014.Google Scholar
  30. 30.
    Malinowski, M., T. Jazwiec, M. Goehler, N. Quay, J. Bush, S. Jovinge, et al. Sonomicrometry-derived 3-dimensional geometry of the human tricuspid annulus. J Thorac. Cardiovasc. Surg. 20:18, 2018.  https://doi.org/10.1016/j.jtcvs.2018.08.110.Google Scholar
  31. 31.
    Malinowski, M., H. Schubert, J. Wodarek, H. Ferguson, L. Eberhart, D. Langholz, et al. Tricuspid annular geometry and strain after suture annuloplasty in acute ovine right Heart failure. Ann. Thorac. Surg. 106(6):1804–1811, 2018.  https://doi.org/10.1016/j.athoracsur.2018.05.057.Google Scholar
  32. 32.
    Malinowski, M., P. Wilton, A. Khaghani, M. Brown, D. Langholz, V. Hooker, et al. The effect of acute mechanical left ventricular unloading on ovine tricuspid annular size and geometry. Interact. Cardiovasc. Thorac. Surg. 23(3):391–396, 2016.  https://doi.org/10.1093/icvts/ivw138.Google Scholar
  33. 33.
    Malinowski, M., P. Wilton, A. Khaghani, D. Langholz, V. Hooker, L. Eberhart, et al. The effect of pulmonary hypertension on ovine tricuspid annular dynamics. Eur. J. Cardiothorac. Surg. 49(1):40–45, 2016.  https://doi.org/10.1093/ejcts/ezv052.Google Scholar
  34. 34.
    Owais, K., C. E. Taylor, L. Jiang, K. R. Khabbaz, M. Montealegre-Gallegos, R. Matyal, et al. Tricuspid annulus: a three-dimensional deconstruction and reconstruction. Ann. Thorac. Surg. 98(5):1536–1542, 2014.  https://doi.org/10.1016/j.athoracsur.2014.07.005.Google Scholar
  35. 35.
    Paul, D. M., A. Naran, E. L. Pierce, C. H. T. Bloodworth, S. F. Yoganathan, and A. P. Bolling. Suture dehiscence in the tricuspid annulus: an ex vivo analysis of tissue strength and composition. Ann. Thorac. Surg. 104(3):820–826, 2017.  https://doi.org/10.1016/j.athoracsur.2017.02.040.Google Scholar
  36. 36.
    Pfannmüller, B., T. Doenst, K. Eberhardt, J. Seeburger, M. A. Borger, and F. W. Mohr. Increased risk of dehiscence after tricuspid valve repair with rigid annuloplasty rings. J. Thorac. Cardiovasc. Surg. 143(5):1050–1055, 2012.Google Scholar
  37. 37.
    Pierce, E. L., C. H. Bloodworth, IV, A. W. Siefert, T. F. Easley, T. Takayama, T. Kawamura, et al. Mitral annuloplasty ring suture forces: Impact of surgeon, ring, and use conditions. J. Thorac. Cardiovasc. Surg. 155(1):1319.e3, 2018.Google Scholar
  38. 38.
    Pierce, E. L., J. Gentile, A. W. Siefert, R. C. Gorman, J. H. Gorman, and A. P. Yoganathan. Real-time recording of annuloplasty suture dehiscence reveals a potential mechanism for dehiscence cascade. J. Thorac. Cardiovasc. Surg. 152(1):e15–e17, 2016.Google Scholar
  39. 39.
    Pierce, E. L., A. W. Siefert, D. M. Paul, S. K. Wells, C. H. Bloodworth, S. Takebayashi, et al. How local annular force and collagen density govern mitral annuloplasty ring dehiscence risk. Ann. Thorac. Surg. 102(2):518–526, 2016.Google Scholar
  40. 40.
    Prihadi, E. A., V. Delgado, R. T. Hahn, J. Leipsic, J. K. Min, and J. J. Bax. Imaging needs in novel transcatheter tricuspid valve interventions. JACC Cardiovasc Imaging. 11(5):736–754, 2018.  https://doi.org/10.1016/j.jcmg.2017.10.029.Google Scholar
  41. 41.
    Rabbah, J.-P. M., N. Saikrishnan, A. W. Siefert, A. Santhanakrishnan, and A. P. Yoganathan. mechanics of healthy and functionally diseased mitral valves: a critical review. J. Biomech. Eng. 135(2):021007–0210016, 2013.  https://doi.org/10.1115/1.4023238.Google Scholar
  42. 42.
    Racker, D. K., P. C. Ursell, and B. F. Hoffman. Anatomy of the tricuspid annulus. Circumferential myofibers as the structural basis for atrial flutter in a canine model. Circulation 84(2):841–851, 1991.Google Scholar
  43. 43.
    Ramakrishna, H. Incidental TOE finding—carpentier mitral annuloplasty ring dehiscence during heart transplantation. Ann Card Anaesth. 11(1):49–50, 2008.MathSciNetGoogle Scholar
  44. 44.
    Rausch, M. K., M. Malinowski, W. D. Meador, P. Wilton, A. Khaghani, and T. A. Timek. The effect of acute pulmonary hypertension on tricuspid annular height, strain, and curvature in sheep. Cardiovasc Eng Technol. 9(3):365–376, 2018.  https://doi.org/10.1007/s13239-018-0367-9.Google Scholar
  45. 45.
    Rausch, M. K., M. Malinowski, P. Wilton, A. Khaghani, and T. A. Timek. Engineering analysis of tricuspid annular dynamics in the beating ovine heart. Ann. Biomed. Eng. 46(3):443–451, 2018.  https://doi.org/10.1007/s10439-017-1961-y.Google Scholar
  46. 46.
    Ring, L., B. S. Rana, A. Kydd, J. Boyd, K. Parker, and R. A. Rusk. Dynamics of the tricuspid valve annulus in normal and dilated right hearts: a three-dimensional transoesophageal echocardiography study. Eur. Heart J. Cardiovasc. Imaging. 13(9):756–762, 2012.  https://doi.org/10.1093/ehjci/jes040.Google Scholar
  47. 47.
    Rosser, B. A., M. Taramasso, and F. Maisano. Transcatheter interventions for tricuspid regurgitation: TriCinch (4Tech). EuroIntervention 12:Y110–Y112, 2016.  https://doi.org/10.4244/eijv12sya30.Google Scholar
  48. 48.
    Salgo, I. S., J. H. Gorman, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6):711–717, 2002.  https://doi.org/10.1161/01.cir.0000025426.39426.83.Google Scholar
  49. 49.
    Schofer, J., K. Bijuklic, C. Tiburtius, L. Hansen, A. Groothuis, and R. T. Hahn. First-in-human transcatheter tricuspid valve repair in a patient with severely regurgitant tricuspid valve. J. Am. Coll. Cardiol. 65(12):1190–1195, 2015.  https://doi.org/10.1016/j.jacc.2015.01.025.Google Scholar
  50. 50.
    Shapira, A. R., M. F. Stoddard, and B. Dawn. Images in cardiovascular medicine. Dehiscence of mitral annuloplasty ring. Circulation 112(18):e305, 2005.  https://doi.org/10.1161/01.CIRCULATIONAHA.104.509570.Google Scholar
  51. 51.
    Siefert, A. W., and R. L. Siskey. Bench models for assessing the mechanics of mitral valve repair and percutaneous surgery. Cardiovasc. Eng. Technol. 6(2):193–207, 2015.Google Scholar
  52. 52.
    Silver, M., J. Lam, N. Ranganathan, and E. Wigle. Morphology of the human tricuspid valve. Circulation 43(3):333–348, 1971.Google Scholar
  53. 53.
    Spinner, E. M., D. Buice, C. H. Yap, and A. P. Yoganathan. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann. Biomed. Eng. 40(5):996–1005, 2012.  https://doi.org/10.1007/s10439-011-0471-6.Google Scholar
  54. 54.
    Spratt, J. R., J. A. Spratt, V. Beachley, and Q. Kang. Strength comparison of mitral annuloplasty ring and suturing combinations: an in vitro study. J. Heart Valve Dis. 21(3):286–292, 2012.Google Scholar
  55. 55.
    Stevanella, M., E. Votta, M. Lemma, C. Antona, and A. Redaelli. Finite element modelling of the tricuspid valve: a preliminary study. Med. Eng. Phys. 32(10):1213–1223, 2010.  https://doi.org/10.1016/j.medengphy.2010.08.013.Google Scholar
  56. 56.
    Taramasso, M., A. Pozzoli, A. Guidotti, F. Nietlispach, D. T. Inderbitzin, S. Benussi, et al. Percutaneous tricuspid valve therapies: the new frontier. Eur. Heart J. 38(9):639–647, 2017.  https://doi.org/10.1093/eurheartj/ehv766.Google Scholar
  57. 57.
    Tei, C., J. P. Pilgrim, P. M. Shah, J. A. Ormiston, and M. Wong. The tricuspid valve annulus: study of size and motion in normal subjects and in patients with tricuspid regurgitation. Circulation 66(3):665–671, 1982.Google Scholar
  58. 58.
    Troxler, L. G., E. M. Spinner, and A. P. Yoganathan. Measurement of strut chordal forces of the tricuspid valve using miniature C ring transducers. J. Biomech. 45(6):1084–1091, 2012.  https://doi.org/10.1016/j.jbiomech.2011.12.004.Google Scholar
  59. 59.
    Tsang, W., G. Wu, D. Rozenberg, J. Mosko, and H. Leong-Poi. Early mitral annuloplasty ring dehiscence with migration to the descending aorta. J. Am. Coll. Cardiol. 54(17):1629, 2009.  https://doi.org/10.1016/j.jacc.2009.03.090.Google Scholar
  60. 60.
    van Rosendael, P. J., V. Kamperidis, W. K. Kong, A. R. van Rosendael, F. van der Kley, N. Ajmone Marsan, et al. Computed tomography for planning transcatheter tricuspid valve therapy. Eur. Heart J. 38(9):665–674, 2017.  https://doi.org/10.1093/eurheartj/ehw499.Google Scholar
  61. 61.
    Wang, D. D., J. C. Lee, B. P. O’Neill, and W. W. O’Neill. Multimodality imaging of the tricuspid valve for assessment and guidance of transcatheter repair. Interv Cardiol Clin. 7(3):379–386, 2018.  https://doi.org/10.1016/j.iccl.2018.04.001.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Shelly Singh-Gryzbon
    • 1
  • Andrew W. Siefert
    • 2
  • Eric L. Pierce
    • 1
  • Ajit P. Yoganathan
    • 1
    Email author
  1. 1.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory University, Technology Enterprise ParkAtlantaUSA
  2. 2.Cardiac Implants LLCTarrytownUSA

Personalised recommendations