Cyclosporin A Protected Cardiomyocytes Against Oxidative Stress Injury by Inhibition of NF-κB Signaling Pathway

  • Meng Ma
  • Xiaohui Ma
  • Jie Cui
  • Yifeng Guo
  • Xiuqin Tang
  • Chuanmin Chen
  • Ying Zhu
  • Chao CuiEmail author
  • Gang WangEmail author



This study aims to investigate the effects and the molecular mechanism of cyclosporin A (CsA) against oxidative stress injury in cultured neonatal rat cardiomyocytes.


Bax/Bcl-2, cl-casp-9/casp-9, cl-casp-3/casp-3, and iNOS/β-actin ratios and p-IκB and IκB levels were analyzed by western blot. IL-1β and TNF-α levels were analyzed by ELISA.


CsA effectively improved the cell viability and reduced the extracellular lactate dehydrogenase release in cardiomyocytes after H2O2-induced oxidative damage. CsA significantly increased the superoxide dismutase activity, glutathione production, and catalase activity but decreased the malonaldehyde level. CsA treatment considerably reduced the H2O2-induced intracellular generation of reactive oxygen species, mitochondrial dysfunction, and release of cytochrome c. CsA could act against H2O2-induced ATP reduction, TCA cycle enzymes, mitochondrial complex I enzyme, and complex V enzyme in cardiomyocytes. CsA significantly decreased the Bax/Bcl-2 ratio, cl-casp-9/casp-9, and cl-casp-3/casp-3 in a concentration-dependent manner. CsA also remarkably reduced the cleaved PARP level and DNA fragmentation. NF-κB was closely related to oxidative stress injury. CsA inhibited NF-κB activation, thereby preventing the upregulation of IL-1β, TNF-α, iNOS, and intracellular NO release.


CsA protected cardiomyocytes against H2O2-induced cell injury. Hence, CsA may be developed as a candidate drug to prevent or treat myocardial ischemia reperfusion injury.


CsA Cardiomyocytes H2O2 Oxidative stress NF-κ



This study was funded by Shandong health science and technology association (No. 2017BJ007).

Conflict of interest

Author Meng Ma declares that he has no conflict of interest. Author Xiaohui Ma declares that she has no conflict of interest. Author Jie Cui declares that she has no conflict of interest. Author Yifeng Guo declares that she has no conflict of interest. Author Xiuqin Tang declares that she has no conflict of interest. Author Chuanmin Chen declares that he has no conflict of interest. Author Ying Zhu declares that she has no conflict of interest. Author Chao Cui declares that she has no conflict of interest. Author Gang Wang declares that he has no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Askari, H., S. F. Rajani, M. Poorebrahim, H. Haghi-Aminjan, E. Raeis-Abdollahi, and M. Abdollahi. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: an introductory review. Pharmacol. Res. 129:44–55, 2018.CrossRefGoogle Scholar
  2. 2.
    Barazzoni, R., M. Zanetti, G. Gortan Cappellari, A. Semolic, M. Boschelle, E. Codarin, A. Pirulli, L. Cattin, and G. Guarnieri. Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasingmitochondrial reactive oxygen species (ROS) generation and nuclear factor-κB inhibitor (IκB)-nuclear factor-κB (NFκB) activation in rat muscle, in the absence of mitochondrial dysfunction. Diabetologia 55:773–782, 2012.CrossRefGoogle Scholar
  3. 3.
    Bartekova, M., M. Barancik, K. Ferenczyova, and N. S. Dhalla. Beneficial effects of N-acetylcysteine and N-mercaptopropionylglycine on ischemia reperfusion injury in the heart. Curr. Med. Chem. 25(3):355–366, 2018.CrossRefGoogle Scholar
  4. 4.
    Bhatti, J. S., S. Kumar, M. Vijayan, G. K. Bhatti, and P. H. Reddy. Therapeutic strategies for mitochondrial dysfunction and oxidative stress in age-related metabolic disorders. Prog. Mol. Biol. Transl. Sci. 146:13–46, 2017.CrossRefGoogle Scholar
  5. 5.
    Cadenas, S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med. 117:76–89, 2018.CrossRefGoogle Scholar
  6. 6.
    Chen, H. W., C. T. Chien, S. L. Yu, Y. T. Lee, and W. J. Chen. Cyclosporine A regulate oxidative stress-induced apoptosis in cardiomyocytes: mechanisms via ROS generation, iNOS and Hsp70. Br. J. Pharmacol. 137(6):771–781, 2002.CrossRefGoogle Scholar
  7. 7.
    Christia, P., and N. G. Frangogiannis. Targeting inflammatory pathways in myocardial infarction. Eur. J. Clin. Invest. 43(9):986–995, 2013.CrossRefGoogle Scholar
  8. 8.
    Cui, C., N. Cui, P. Wang, S. Song, H. Liang, and A. Ji. Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicus against PC12 hypoxia/reoxygenation injury by inhibition of the MAPK signaling pathway. Cell Mol. Neurobiol. 35(8):1081–1092, 2015.CrossRefGoogle Scholar
  9. 9.
    Deng, F., S. Wang, L. Zhang, X. Xie, S. Cai, H. Li, G. L. Xie, H. L. Miao, C. Yang, X. Liu, and Z. Xia. Propofol through upregulating caveolin-3 attenuates post-hypoxic mitochondrial damage and cell death in H9C2 cardiomyocytes during hyperglycemia. Cell Physiol. Biochem. 44(1):279–292, 2017.CrossRefGoogle Scholar
  10. 10.
    Gao, S., L. Zhan, Z. Yang, R. Shi, H. Li, Z. Xia, S. Yuan, Q. P. Wu, T. Wang, and S. Yao. Remote limb ischaemic postconditioning protects against myocardial ischaemia/reperfusion injury in mice: activation of JAK/STAT3-mediated Nrf2-antioxidant signalling. Cell Physiol. Biochem. 43(3):1140–1151, 2017.CrossRefGoogle Scholar
  11. 11.
    Hantson, P. Mechanisms of toxic cardiomyopathy. Clin. Toxicol. (Phila). 27:1–9, 2018.CrossRefGoogle Scholar
  12. 12.
    Heiske, M., T. Letellier, and E. Klipp. Comprehensive mathematical model of oxidative phosphorylation valid for physiological and pathological conditions. FEBS J. 284(17):2802–2828, 2017.CrossRefGoogle Scholar
  13. 13.
    Huang, W. Q., J. L. Wen, R. Q. Lin, P. Wei, and F. Huang. Effects of mTOR/NF-κB signaling pathway and high thoracic epidural anesthesia on myocardial ischemia-reperfusion injury via autophagy in rats. J. Cell Physiol. 233:6669–6678, 2018.CrossRefGoogle Scholar
  14. 14.
    Jeddi, S., A. Ghasemi, A. Asgari, and A. Nezami-Asl. Role of inducible nitric oxide synthase in myocardial ischemia-reperfusion injury in sleep-deprived rats. Sleep Breath 22:353–359, 2018.CrossRefGoogle Scholar
  15. 15.
    Jeddi, S., J. Zaman, and A. Ghasemi. Effect of fetal hypothyroidism on tolerance to ischemia-reperfusion injury in aged male rats: role of nitric oxide. Nitric Oxide. 55–56:82–90, 2016.CrossRefGoogle Scholar
  16. 16.
    Jin, Q., R. Li, N. Hu, T. Xin, P. Zhu, S. Hu, S. Ma, H. Zhu, J. Ren, and H. Zhou. DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol. 14:576–587, 2018.CrossRefGoogle Scholar
  17. 17.
    Kanaan, G. N., and M. E. Harper. Cellular redox dysfunction in the development of cardiovascular diseases. Biochim. Biophys. Acta Gen. Subj. 11(1861):2822–2829, 2017.CrossRefGoogle Scholar
  18. 18.
    Kumar, D., H. Lou, and P. K. Singal. Oxidative stress and apoptosis in heart dysfunction. Herz. 27(7):662–668, 2002.CrossRefGoogle Scholar
  19. 19.
    Liao, P., G. Sun, C. Zhang, M. Wang, Y. Sun, Y. Zhou, X. Sun, and J. Jian. Bauhinia championii flavone attenuates hypoxia-reoxygenation induced apoptosis in H9c2 cardiomyocytes by improving mitochondrial dysfunction. Molecules. 21(11):1469, 2016.CrossRefGoogle Scholar
  20. 20.
    Lin, D., Y. Chai, R. Izadpanah, S. E. Braun, and E. Alt. NPR3 protects cardiomyocytes from apoptosis through inhibition of cytosolic BRCA1 and TNF-α. Cell Cycle. 15(18):2414–2419, 2016.CrossRefGoogle Scholar
  21. 21.
    Makhdoumi, P., A. Roohbakhsh, and G. Karimi. MicroRNAs regulate mitochondrial apoptotic pathway in myocardial ischemia-reperfusion-injury. Biomed. Pharmacother. 84:1635–1644, 2016.CrossRefGoogle Scholar
  22. 22.
    Martin-Puig, S., D. Tello, and J. Aragonés. Novel perspectives on the PHD-HIF oxygen sensing pathway in cardioprotection mediated by IPC and RIPC. Front Physiol. 6:137, 2015.CrossRefGoogle Scholar
  23. 23.
    Moldogazieva, N. T., I. M. Mokhosoev, N. B. Feldman, and S. V. Lutsenko. ROS and RNS signalling: adaptive redox switches through oxidative, nitrosative protein modifications. Free Radic. Res. 52(5):507–543, 2018.CrossRefGoogle Scholar
  24. 24.
    Morris, G., K. Walder, S. L. McGee, O. M. Dean, S. J. Tye, M. Maes, and M. Berk. A model of the mitochondrial basis of bipolar disorder. Neurosci. Biobehav. Rev. 74:1–20, 2017.CrossRefGoogle Scholar
  25. 25.
    Mott, J. L., D. Zhang, and H. P. Zassenhaus. Mitochondrial DNA mutations, apoptosis, and the misfolded protein response. Rejuvenation Res. 8(4):216–226, 2005.CrossRefGoogle Scholar
  26. 26.
    Murphy, M. P. Understanding and preventing mitochondrial oxidative damage. Biochem. Soc. Trans. 44(5):1219–1226, 2016.CrossRefGoogle Scholar
  27. 27.
    Najafi, M., E. Noroozi, A. Javadi, and R. Badalzadeh. Anti-arrhythmogenic and anti-inflammatory effects of troxerutin in ischemia/reperfusion injury of diabetic myocardium. Biomed. Pharmacother. 102:385–391, 2018.CrossRefGoogle Scholar
  28. 28.
    Ravindran, S., S. R. Boovarahan, K. Shanmugam, R. C. Vedarathinam, and G. A. Kurian. Sodium thiosulfate preconditioning ameliorates ischemia/reperfusion injury in rat hearts via reduction of oxidative stress and apoptosis. Cardiovasc. Drugs Ther. 31(5–6):511–524, 2017.CrossRefGoogle Scholar
  29. 29.
    Redza-Dutordoir, M., and D. A. Averill-Bates. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 1863(12):2977–2992, 2016.CrossRefGoogle Scholar
  30. 30.
    Ricci, J. E., C. Muñoz-Pinedo, P. Fitzgerald, B. Bailly-Maitre, G. A. Perkins, N. Yadava, I. E. Scheffler, M. H. Ellisman, and D. R. Green. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell. 117(6):773–786, 2004.CrossRefGoogle Scholar
  31. 31.
    Shanmugam, K., S. Ravindran, G. A. Kurian, and M. Rajesh. Fisetin confers cardioprotection against myocardial ischemia reperfusion injury by suppressing mitochondrial oxidative stress and mitochondrial dysfunction and inhibiting glycogen synthase kinase 3β activity. Oxid. Med. Cell Longev. 2018:9173436, 2018.CrossRefGoogle Scholar
  32. 32.
    Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11:613–661, 2017.CrossRefGoogle Scholar
  33. 33.
    Sies, H., C. Berndt, and D. P. Jones. Oxidative stress. Annu. Rev. Biochem. 86:715–748, 2017.CrossRefGoogle Scholar
  34. 34.
    Sucher, R., P. Gehwolf, T. Kaier, M. Hermann, M. Maglione, R. Oberhuber, T. Ratschiller, A. V. Kuznetsov, F. Bosch, A. V. Kozlov, M. I. Ashraf, S. Schneeberger, G. Brandacher, R. Ollinger, R. Margreiter, and J. Troppmair. Intracellular signaling pathways control mitochondrial events associated with the development of ischemia/reperfusion-associated damage. Transpl. Int. 22(9):922–930, 2009.CrossRefGoogle Scholar
  35. 35.
    Sun, C. L., J. Wei, and L. Q. Bi. Rutin attenuates oxidative stress and proinflammatory cytokine level in adjuvant induced rheumatoid arthritis via inhibition of NF-κB. Pharmacology 100:40–49, 2017.CrossRefGoogle Scholar
  36. 36.
    Szewczyk, A., and L. Wojtczak. Mitochondria as a pharmacological target. Pharmacol. Rev. 54(1):101–127, 2002.CrossRefGoogle Scholar
  37. 37.
    Tahrir, F. G., D. Langford, S. Amini, T. Mohseni Ahooyi, and K. Khalili. Mitochondrial quality control in cardiac cells: mechanisms and role in cardiac cell injury and disease. J. Cell Physiol. 2018. Scholar
  38. 38.
    Wang, G., J. Cui, Y. Guo, Y. Wang, L. Kang, and L. Liu. Cyclosporin a protects H9c2 cells against chemical hypoxia-induced injury via inhibition of MAPK signaling pathway. Int. Heart J. 57(4):483–489, 2016.CrossRefGoogle Scholar
  39. 39.
    Xu, L., X. Zheng, Y. Wang, Q. Fan, M. Zhang, R. Li, J. Ye, X. Wu, W. Zhao, and Y. Zhang. Berberine protects acute liver failure in mice through inhibiting inflammation and mitochondria-dependent apoptosis. Eur. J. Pharmacol. 819:161–168, 2018.CrossRefGoogle Scholar
  40. 40.
    Yang, D. K. Cabbage (Brassica oleracea var. capitata) protects against H2O2-induced oxidative stress by preventing mitochondrial dysfunction in H9c2 cardiomyoblasts. Evid Based Complement Alternat Med 2018:2179021, 2018.Google Scholar
  41. 41.
    Zhang, N., X. Meng, L. Mei, J. Hu, C. Zhao, and W. Chen. The long non-coding RNA SNHG1 attenuates cell apoptosis by regulating miR-195 and BCL2-like protein 2 in human cardiomyocytes. Cell Physiol. Biochem. 50(3):1029–1040, 2018.CrossRefGoogle Scholar
  42. 42.
    Zhou, T., E. R. Prather, D. E. Garrison, and L. Zuo. Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle. Int. J. Mol. Sci. 19(2):417, 2018.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Meng Ma
    • 1
  • Xiaohui Ma
    • 2
  • Jie Cui
    • 3
  • Yifeng Guo
    • 4
  • Xiuqin Tang
    • 1
  • Chuanmin Chen
    • 4
  • Ying Zhu
    • 1
  • Chao Cui
    • 5
    Email author
  • Gang Wang
    • 6
    Email author
  1. 1.Department of PharmacyTaian Maternal and Child Health HospitalTaianChina
  2. 2.Department of PharmacyTaian Hospital of TCMTaianChina
  3. 3.Department of Burn SurgryBeijing Fengtai You’anmen HospitalBeijingChina
  4. 4.Department of Clinical LaboratoryPeople’s Hospital of XintaiTaianChina
  5. 5.State key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
  6. 6.Department of CardiologyAffiliated Hospital of Taishan Medical UniversityTaianChina

Personalised recommendations