The Impact of the Right Coronary Artery Geometric Parameters on Hemodynamic Performance

  • N. Pinho
  • L. C. Sousa
  • C. F. Castro
  • C. C. António
  • M. Carvalho
  • W. Ferreira
  • R. Ladeiras-Lopes
  • N. D. Ferreira
  • P. Braga
  • N. Bettencourt
  • S. I. S. PintoEmail author



Coronary artery geometry can have a significant impact in the hemodynamic behavior of coronary blood flow, influencing atherosclerotic plaque formation. The present work focuses on, through a statistical study, the connection between several geometric parameters of the right coronary artery—ostium cross-sectional area, angles between the common trunk and the side-branches, tortuosity, curvature and cross-sectional area in each side-branch—and their influence on hemodynamic descriptors. Parameters such as low wall shear stress and local disturbed flow, which are associated with atherosclerosis formation, were analysed.


Computed tomography images of ten healthy individuals were selected to reconstruct in vivo three-dimensional models of right coronary arteries. Blood flow was simulated through a compliant model with realistic boundary conditions. Calculated hemodynamic descriptors values were correlated with the geometric parameters using the Pearson correlation coefficient (r) and the p value.


The strongest correlations were found in the middle and distal segments of the right coronary artery. A decrease in the ostium area promotes a decrease in the WSS magnitude from the proximal to the distal segment (r = 0.82). Very strong correlations (r > 0.90) were achieved between geometric parameters (cross-sectional area, angle, tortuosity) of the right-ventricular branch and the wall shear stress magnitude in the middle and distal segments.


Low values of tortuosity, smaller cross-sectional area and higher angle of the right-ventricular branch leads to a hemodynamic behavior more propitious to atherosclerosis formation, within the study cases. The right-ventricular branch seems to have the highest influence in the hemodynamic behavior of the right coronary artery.


Atherosclerosis Right coronary artery Geometric parameters Statistics Fluid–structure interaction Wall shear stress-based descriptors 



Authors gratefully acknowledge the financial support of the Foundation for Science and Technology (FCT), Portugal, the Engineering Faculty of University of Porto (FEUP), the Institute of Science and Innovation in Mechanical and Industrial Engineering (LAETA-INEGI), the Cardiovascular R&D Unit of the Medicine Faculty of University of Porto (FMUP) and the Cardiology Department of Gaia/Espinho Hospital Centre.

Conflict of interest

Authors declare that they have not any actual or potential conflict of interest.

Ethical Approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5).

Informed Consent

Informed consent was obtained from all patients for being included in the study.

Supplementary material

13239_2019_403_MOESM1_ESM.docx (117 kb)
Supplementary material 1 (DOCX 117 kb)
13239_2019_403_MOESM2_ESM.pdf (14.4 mb)
Supplementary material 2 (PDF 14778 kb)


  1. 1.
    Ansys® Academic Research 15.0. ANSYS Fluent Tutorial Guide., 2013.Google Scholar
  2. 2.
    Bentzon, J. F., F. Otsuka, R. Virmani, and E. Falk. Mechanisms of plaque formation and rupture. Circ. Res. 114:1852–1866, 2014.CrossRefGoogle Scholar
  3. 3.
    Chaichana, T., Z. Sun, and J. Jewkes. Computational fluid dynamics analysis of the effect of plaques in the left coronary artery. Comput. Math. Methods Med. 2012:504367, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chu, M., C. von Birgelen, Y. Li, J. Westra, J. Yang, N. R. Holm, J. H. C. Reiber, W. Wijns, and S. Tu. Quantification of disturbed coronary flow by disturbed vorticity index and relation with fractional flow reserve. Atherosclerosis 273:136–144, 2018.CrossRefGoogle Scholar
  5. 5.
    Dahiru, T. P-value, a true test of statistical significance? A cautionary note. Ann. Ibadan Postgrad. Med. 6:21–26, 2011.CrossRefGoogle Scholar
  6. 6.
    Evans, J. D. Straightforward Statistics for the Behavioral Science. Boston: Brooks/Cole, 1995.Google Scholar
  7. 7.
    Feher, J. Vascular Function: Hemodynamics BT—Quantitative Human Physiology (2nd ed.). Boston: Academic Press, pp. 568–577, 2012. Scholar
  8. 8.
    Gallo, D., G. Isu, D. Massai, F. Pennella, M. A. Deriu, R. Ponzini, C. Bignardi, A. Audenino, G. Rizzo, and U. Morbiducci. A survey of quantitative descriptors of arterial flows BT. In: Visualization and Simulation of Complex Flows in Biomedical Engineering, edited by R. Lima, Y. Imai, T. Ishikawa, and M. S. N. Oliveira. Dordrecht: Springer, 2014, pp. 1–24.Google Scholar
  9. 9.
    Gao, H., Q. Long, M. Graves, J. H. Gillard, and Z. Y. Li. Carotid arterial plaque stress analysis using fluid-structure interactive simulation based on in vivo magnetic resonance images of four patients. J. Biomech. 42:1416–1423, 2009.CrossRefGoogle Scholar
  10. 10.
    Giannoglou, G. D., A. P. Antoniadis, Y. S. Chatzizisis, and G. E. Louridas. Difference in the topography of atherosclerosis in the left versus right coronary artery in patients referred for coronary angiography. BMC Cardiovasc. Disord. 10:2–7, 2010.CrossRefGoogle Scholar
  11. 11.
    Giannopoulos, A. A., Y. S. Chatzizisis, P. Maurovich-Horvat, A. P. Antoniadis, U. Hoffmann, M. L. Steigner, F. J. Rybicki, and D. Mitsouras. Quantifying the effect of side branches in endothelial shear stress estimates. Atherosclerosis 251:213–218, 2016.CrossRefGoogle Scholar
  12. 12.
    Guerciotti, B., C. Vergara, S. Ippolito, A. Quarteroni, C. Antona, and R. Scrofani. A computational fluid–structure interaction analysis of coronary Y-grafts. Med. Eng. Phys. 47:117–127, 2017.CrossRefGoogle Scholar
  13. 13.
    He, X., X. He, D. N. Ku, and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118:74–82, 1996.CrossRefGoogle Scholar
  14. 14.
    Johnston, B. M., P. R. Johnston, S. Corney, and D. Kilpatrick. Non-newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech. 37:709–720, 2004.CrossRefGoogle Scholar
  15. 15.
    Johnston, B. M., P. R. Johnston, S. Corney, and D. Kilpatrick. Non-newtonian blood flow in human right coronary arteries: transient simulations. J. Biomech. 39:1116–1128, 2006.CrossRefGoogle Scholar
  16. 16.
    Kaazempur-Mofrad, M. R., and C. R. Ethier. Mass transport in an anatomically realistic human right coronary artery. Ann. Biomed. Eng. 29:121–127, 2001.CrossRefGoogle Scholar
  17. 17.
    Karimi, A., M. Navidbakhsh, S. Faghihi, A. Shojaei, and K. Hassani. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 227:148–161, 2012.CrossRefGoogle Scholar
  18. 18.
    Karimi, A., M. Navidbakhsh, A. Shojaei, K. Hassani, and S. Faghihi. Study of plaque vulnerability in coronary artery using Mooney-Rivlin model: a combination of finite element and experimental method. Biomed. Eng. Appl. Basis Commun. 26:1450013, 2014.CrossRefGoogle Scholar
  19. 19.
    Kirpalani, A., H. Park, J. Butany, K. W. Johnston, and M. Ojha. Velocity and wall shear stress patterns in the human right coronary artery. J. Biomech. Eng. Asme 121:370–375, 1999.CrossRefGoogle Scholar
  20. 20.
    Knight, J., U. Olgac, S. C. Saur, D. Poulikakos, W. Marshall, P. C. Cattin, H. Alkadhi, and V. Kurtcuoglu. Choosing the optimal wall shear parameter for the prediction of plaque location—A patient-specific computational study in human right coronary arteries. Atherosclerosis 211:445–450, 2010.CrossRefGoogle Scholar
  21. 21.
    Lee, S.-W., L. Antiga, and D. A. Steinman. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J. Biomech. Eng. 131:061013, 2009.CrossRefGoogle Scholar
  22. 22.
    Liu, G., J. Wu, D. N. Ghista, W. Huang, and K. K. L. Wong. Hemodynamic characterization of transient blood flow in right coronary arteries with varying curvature and side-branch bifurcation angles. Comput. Biol. Med. 64:117–126, 2015.CrossRefGoogle Scholar
  23. 23.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.CrossRefGoogle Scholar
  24. 24.
    Malvè, M., A. M. Gharib, S. K. Yazdani, G. Finet, M. A. Martínez, R. Pettigrew, and J. Ohayon. Tortuosity of coronary bifurcation as a potential local risk factor for atherosclerosis: CFD steady state study based on in vivo dynamic CT measurements. Ann. Biomed. Eng. 43:82–93, 2014.CrossRefGoogle Scholar
  25. 25.
    Myers, J. G., J. A. Moore, M. Ojha, K. W. Johnston, and C. R. Ethier. Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng. 29:109–120, 2001.CrossRefGoogle Scholar
  26. 26.
    Pinho, N., M. Bento, L. C. Sousa, S. Pinto, C. F. Castro, C. C. António, and E. Azevedo. Patient-Specific Study of a Stenosed Carotid Artery Bifurcation Using Fluid–Structure Interactive Simulation BT—VipIMAGE 2017: Proceedings of the VI ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing Porto, Portugal, Octob. edited by J. M. R. S. Tavares, and R. M. Natal Jorge. Cham: Springer International Publishing, 2018, pp. 495–503.
  27. 27.
    Pinho, N., C. F. Castro, C. C. António, N. Bettencourt, L. C. Sousa, and S. I. S. Pinto. Correlation between geometric parameters of the left coronary artery and hemodynamic descriptors of atherosclerosis: FSI and statistical study. Med. Biol. Eng. Comput. 2018. Scholar
  28. 28.
    Pinto, S., and J. B. L. M. Campos. Numerical study of wall shear stress-based descriptors in the human left coronary artery. Comput. Methods Biomech. Biomed. Eng. 19:1443–1455, 2016.CrossRefGoogle Scholar
  29. 29.
    Pinto, S. I. S., J. B. L. M. Campos, E. Azevedo, C. F. Castro, and L. C. Sousa. Numerical study on the hemodynamics of patient-specific carotid bifurcation using a new mesh approach. Int. J. Numer. Method. Biomed. Eng. 34:e2972, 2018.CrossRefGoogle Scholar
  30. 30.
    Siogkas, P. K., M. I. Papafaklis, A. I. Sakellarios, K. A. Stefanou, C. V. Bourantas, L. S. Athanasiou, T. P. Exarchos, K. K. Naka, L. K. Michalis, O. Parodi, and D. I. Fotiadis. Patient-specific simulation of coronary artery pressure measurements: An in vivo three-dimensional validation study in humans. Biomed Res. Int. 2015, 2015.Google Scholar
  31. 31.
    Soulis, J. V., and D. K. Fytanidis. Oscillating shear index, wall shear stress and low density lipoprotein accumulation in human RCAs. Acad. Sci. USA 32:867–877, 2010.Google Scholar
  32. 32.
    Sousa, L. C., C. F. Castro, C. C. António, A. M. F. Santos, R. M. dos Santos, P. M. A. C. Castro, E. Azevedo, and J. M. R. S. Tavares. Toward hemodynamic diagnosis of carotid artery stenosis based on ultrasound image data and computational modeling. Med. Biol. Eng. Comput. 52:971–983, 2014.CrossRefGoogle Scholar
  33. 33.
    Sousa, L. C., C. F. Castro, C. C. António, J. M. R. S. Tavares, A. M. F. Santos, R. M. Santos, P. Castro, and E. Azevedo. Simulated hemodynamics in human carotid bifurcation based on Doppler ultrasound data. Int. J. Clin. Neurosci. Ment. Health 1(1–7):15, 2014.CrossRefGoogle Scholar
  34. 34.
    Torii, R., J. Keegan, N. B. Wood, A. W. Dowsey, A. D. Hughes, G. Z. Yang, D. N. Firmin, S. A. M. Thom, and X. Y. Xu. MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion. Ann. Biomed. Eng. 38:2606–2620, 2010.CrossRefGoogle Scholar
  35. 35.
    Torii, R., N. B. Wood, N. Hadjiloizou, A. W. Dowsey, A. R. Wright, A. D. Hughes, J. Davies, D. P. Francis, J. Mayet, G.-Z. Yang, S. A. M. Thom, and X. Y. Xu. Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun. Numer. Methods Eng. 25:565–580, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Wellnhofer, E., J. Osman, U. Kertzscher, K. Affeld, E. Fleck, and L. Goubergrits. Flow simulation studies in coronary arteries-impact of side-branches. Atherosclerosis 213:475–481, 2010.CrossRefGoogle Scholar
  37. 37.
    WHO. The Atlas of Heart Disease and Stroke. Geneva: WHO, 2010.Google Scholar
  38. 38.
    Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.CrossRefGoogle Scholar
  39. 39.
    Zakaria, H., A. M. Robertson, and C. W. Kerber. A parametric model for studies of flow in arterial bifurcations. Ann. Biomed. Eng. 36:1515–1530, 2008.CrossRefGoogle Scholar
  40. 40.
    Zeng, D., E. Boutsianis, M. Ammann, K. Boomsma, S. Wildermuth, and D. Poulikakos. A study on the compliance of a right coronary artery and its impact on wall shear stress. J. Biomech. Eng. 130:041014, 2008.CrossRefGoogle Scholar
  41. 41.
    Zeng, D., Z. Ding, M. H. Friedman, and C. Ross Ethier. Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31:420–429, 2003.CrossRefGoogle Scholar
  42. 42.
    Zhang, Q., B. Gao, and Y. Chang. Effect of different rotational directions of BJUT-II VAD on aortic swirling flow characteristics: a primary computational fluid dynamics study. Med. Sci. Monit. 22:2576–2588, 2016.CrossRefGoogle Scholar
  43. 43.
    Zhu, H., and M. H. Friedman. Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arterioscler. Thromb. Vasc. Biol. 23:2260–2265, 2003.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • N. Pinho
    • 2
  • L. C. Sousa
    • 1
    • 2
  • C. F. Castro
    • 1
    • 2
  • C. C. António
    • 1
    • 2
  • M. Carvalho
    • 4
  • W. Ferreira
    • 4
  • R. Ladeiras-Lopes
    • 3
    • 4
  • N. D. Ferreira
    • 4
  • P. Braga
    • 4
  • N. Bettencourt
    • 3
  • S. I. S. Pinto
    • 1
    • 2
    Email author
  1. 1.Engineering FacultyUniversity of PortoPortoPortugal
  2. 2.Institute of Science and Innovation in Mechanical and Industrial Engineering (LAETA-INEGI)PortoPortugal
  3. 3.Cardiovascular R&D Unit, Faculty of MedicineUniversity of PortoPortoPortugal
  4. 4.Department of CardiologyGaia/Espinho Hospital CentreVila Nova de GaiaPortugal

Personalised recommendations