Advertisement

Multi-Objective Optimization Design of Balloon-Expandable Coronary Stent

  • Xiang ShenEmail author
  • Hongfei Zhu
  • Jiabao Jiang
  • Yongquan Deng
  • Song Ji
Article
  • 26 Downloads

Abstract

Purpose

Recent studies suggested that suboptimal delivery and longitudinal stent deformation can result in in-stent restenosis. Therefore, the purpose of this paper was to study the effect of stent geometry on stent flexibility and longitudinal stiffness (LS) and optimize the two metrics simultaneously. Then, the reliable and accurate relationships between metrics and design variables were established.

Methods

A multi-objective optimization method based on finite element analysis was proposed for the investigation and improvement of stent flexibility and LS. The relative influences of design variables on the two metrics were evaluated on the basis of the main effects. Three surrogate models, namely, the response surface model (RSM), radial basis function neural network (RBF), and Kriging were employed and compared.

Results

The accuracies of the three models in fitting flexibility were nearly similar, although Kriging made more accurate prediction in LS. The link width played important roles in flexibility and LS. Although the flexibility of the optimal stent decreased by 13%, the LS increased by 48.3%.

Conclusions

The obtained results showed that the multi-objective optimization method is efficient in predicting an optimal stent design. The method presented in this paper can be useful in optimizing stent design and improving the comprehensive mechanical properties of stents.

Keywords

Coronary stents Multi-objective optimization Flexibility Longitudinal stiffness 

Notes

Acknowledgment

This project is supported by the National Natural Science Foundation of China (51305171), Natural Science Foundation of Jiangsu Province (BK20130525), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (13KJB460006), China Postdoctoral Science Foundation (2011M500858), Foundation of Jiangsu University (10JDG123) and Project of Jiangsu University for training young backbone teachers.

Conflict of interest

Xiang Shen, Hongfei Zhu, Jiabao Jiang, Yongquan Deng and Song Ji declare that they have no conflict of interest.

Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Azaouzi, M., N. Lebaal, A. Makradi, and S. Belouettar. Optimization based simulation of self-expanding nitinol stent. Mater. Des. 50(17):917–928, 2013.CrossRefGoogle Scholar
  2. 2.
    Bressloff, N. W., G. Ragkousis, and N. Curzen. Design optimisation of coronary artery stent systems. Ann. Biomed. Eng. 44(2):357–367, 2016.CrossRefGoogle Scholar
  3. 3.
    Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE T Evol. Comput. 6(2):182–197, 2002.CrossRefGoogle Scholar
  4. 4.
    Demanget, N., P. Latil, L. Orgeas, P. Badel, S. Avril, C. Geindreau, J. N. Albertini, and J. P. Favre. Severe bending of two aortic stent-grafts: an experimental and numerical mechanical analysis. Ann. Biomed. Eng. 40(12):2674–2686, 2012.CrossRefGoogle Scholar
  5. 5.
    Eshghi, N., M. H. Hojjati, M. Imani, and A. M. Goudarzi. Finite element analysis of mechanical behaviors of coronary stent. Procedia Eng. 10(2):3056–3061, 2011.CrossRefGoogle Scholar
  6. 6.
    Foin, N., C. D. Mario, D. P. Francis, and J. E. Davies. Stent flexibility versus concertina effect: mechanism of an unpleasant trade-off in stent design and its implications for stent selection in the cath-lab. Int. J. Cardiol. 164(3):259–261, 2013.CrossRefGoogle Scholar
  7. 7.
    Gundert, T. J., A. L. Marsden, W. Yang, and J. F. LaDisa. Optimization of cardiovascular stent design using computational fluid dynamics. J. Biomech. Eng. 134(1):031002, 2012.CrossRefGoogle Scholar
  8. 8.
    Hanratty, C. G., and S. J. Walsh. Longitudinal compression: a new complication with modern coronary stent platforms-time to think beyond deliverability? Eurointervention. 7(7):872–877, 2011.CrossRefGoogle Scholar
  9. 9.
    Hsiao, H. M., C. T. Yeh, C. Wang, L. Chao, and D. Li. Effects of stent design on new clinical issue of longitudinal stent compression in interventional cardiology. Biomed. Microdevices. 16(4):599–607, 2014.CrossRefGoogle Scholar
  10. 10.
    Imani, M. Simulation of mechanical behaviors of NIR stent in a stenotic artery using finite element method. World Appl. Sci. J. 22(7):892–897, 2013.Google Scholar
  11. 11.
    Imani, S. M., A. M. Goudarzi, S. E. Ghasemi, A. Kalani, and J. Mahdinejad. Analysis of the stent expansion in a stenosed artery using finite element method: Application to stent versus stent study. Proc. Inst. Mech. Eng. Part H: J Eng. Med. 228(10):996–1004, 2014.CrossRefGoogle Scholar
  12. 12.
    Imani, M., A. M. Goudarzi, and M. H. Hojjati. Finite element analysis of mechanical behaviors of multi-link stent in a coronary artery with plaque. World Appl. Sci. J. 3(21):1597–1602, 2013.Google Scholar
  13. 13.
    Imani, S. M., A. M. Goudarzi, P. Valipour, M. Barzegar, J. Mahdinejad, and S. E. Ghasemi. Application of finite element method to comparing the NIR stent with the multi-link stent for narrowings in coronary arteries. Acta Mech. Solida Sin. 28(5):605–612, 2015.CrossRefGoogle Scholar
  14. 14.
    Jones, D., M. Schonlau, and W. Welch. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4):455–492, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ju, F., Z. Xia, and C. Zhou. Repeated unit cell (RUC) approach for pure bending analysis of coronary stents. Comput. Method Biomech. Biomed. Eng. 11(4):419–431, 2008.CrossRefGoogle Scholar
  16. 16.
    Kwok, O. H. Stent concertina: stent design does matter. J. Invasive Cardiol. 25(6):114–119, 2013.Google Scholar
  17. 17.
    Maleckis, K., P. Deegan, W. Poulson, C. Sievers, A. Desyatova, J. MacTaggart, and A. Kamenskiy. Comparison of femoroapopliteal artery stents under axial and radial compression, axial tension, bending, and torsion deformations. J. Mech. Behav. Biomed. 75:160–168, 2017.CrossRefGoogle Scholar
  18. 18.
    Matheron, G. Principles of geostatistics. Econ. Geol. 58(8):1246–1266, 1963.CrossRefGoogle Scholar
  19. 19.
    Morris, M. D., and T. J. Mitchell. Exploratory designs for computational experiments. J. Stat. Plan Inference 43(3):381–402, 1995.CrossRefzbMATHGoogle Scholar
  20. 20.
    Murphy, E. A., and F. J. Boyle. Reducing in-stent restenosis through novel stent flow field augmentation. Cardiovasc. Eng. Technol. 3(4):353–373, 2012.CrossRefGoogle Scholar
  21. 21.
    Myers, R. H., and D. C. Montgomery. Response surface methodology: process and product optimization using designed experiment. J. Stat. Plan Inference 59:185–186, 1995.zbMATHGoogle Scholar
  22. 22.
    Ni, Z., X. Gu, and Y. Wang. Rapid prediction method for nonlinear expansion process of medical vascular stent. Sci China Ser E: Technol Sci. 52(5):1323–1330, 2009.CrossRefGoogle Scholar
  23. 23.
    Ni, X., C. Pan, and P. B. Gangadhara. Numerical investigations of the mechanical properties of a braided non-vascular stent design using finite element method. Comput. Methods Biomech. Biomed. Eng. 18(10):1117–1125, 2015.CrossRefGoogle Scholar
  24. 24.
    Ni, X., G. Wang, Z. Long, and C. Pan. Analysis of mechanical performance of braided esophageal stent structure and its wires. J. Southeast Univ. (English Ed) 28(4):457–463, 2012.Google Scholar
  25. 25.
    Ni, X., Y. Zhang, H. Zhao, and C. Pan. Numerical research on the biomechanical behaviour of braided stents with different end shapes and stent-oesophagus interaction. Int. J. Numer. Method Biomed. Eng. 34(6):e2971, 2018.CrossRefGoogle Scholar
  26. 26.
    Ormiston, J. A., B. Webber, and M. W. Webster. Stent longitudinal integrity: bench insights into a clinical problem. Jacc-Cardiovasc Int. 4(12):1310–1317, 2011.CrossRefGoogle Scholar
  27. 27.
    Pant, S., N. W. Bressloff, and G. Limbert. Geometry parameterization and multidisciplinary constrained optimisation of coronary stents. Biomech. Model. Mechanobiol. 11(1–2):61–82, 2012.CrossRefGoogle Scholar
  28. 28.
    Pant, S., G. Limbert, N. Curzen, and N. W. Bressloff. Multi-objective design optimization of coronary stents. Biomaterials. 32(31):7755–7773, 2011.CrossRefGoogle Scholar
  29. 29.
    Park, J. K., K. S. Lim, I. H. Bae, J. P. Nam, J. H. Cho, C. Choi, J. W. Nah, and M. H. Jeong. Stent linker effect in a porcine coronary restenosis model. J. Mech. Behav. Biomed. 53:68–77, 2016.CrossRefGoogle Scholar
  30. 30.
    Petrini, L., F. Migliavacca, F. Auricchio, and G. Dubini. Numerical investigation of the intravascular coronary stent flexibility. J. Biomech. 37(4):495–501, 2004.CrossRefGoogle Scholar
  31. 31.
    Ragkousis, G. E., N. Curzen, and N. W. Bressloff. Multi-objective optimisation of stent dilation strategy in a patient-specific coronary artery via computational and surrogate modeling. J. Biomech. 49(2):205–215, 2016.CrossRefGoogle Scholar
  32. 32.
    Rigattieri, S., A. Sciahbasi, and P. Loschiavo. The clinical spectrum of longitudinal deformation of coronary stents: from a mere angiographic finding to a severe complication. J. Invasive Cardiol. 25(5):101–105, 2013.Google Scholar
  33. 33.
    Shen, X., Y. Deng, Z. Xie, S. Ji, and H. Zhu. Flexibility behavior of coronary artery stents: the role of linker investigated with numerical simulation. J. Mech. Med. Biol. 17(08):1750112, 2017.CrossRefGoogle Scholar
  34. 34.
    Shen, X., Z. Xie, Y. Deng, and S. Ji. Effects of metal material stent design parameters on longitudinal stent strength. Key Eng. Mater. 723:299–304, 2017.CrossRefGoogle Scholar
  35. 35.
    Shen, X., H. Yi, and Z. Ni. Multi-objective design optimization of coronary stent mechanical properties. Chin. J. Dial Artif. Organs. 4(3):835–838, 2012.Google Scholar
  36. 36.
    Simpson, T. W., D. K. J. Lin, and W. Chen. Sampling strategies for computer experiments: design and analysis. Int. J. Reliab. Appl. 2(3):209–240, 2001.Google Scholar
  37. 37.
    Williams, P. D., M. A. Mamas, K. P. Morgan, M. EI-Omar, B. Clarke, A. Bainbridge, F. Fath-Ordoubadi, and D. G. Fraser. Longitudinal stent deformation: a retrospective analysis of frequency and mechanisms. Eurointervention 8(2):267–274, 2012.CrossRefGoogle Scholar
  38. 38.
    Wu, W., D. Yang, M. Qi, and W. Wang. An FEA method to study flexibility of expanded coronary stents. J. Mater. Process Technol. 184:447–450, 2007.CrossRefGoogle Scholar
  39. 39.
    Zhao, S., L. Gu, and S. R. Foremming. Effects of arterial strain and stress in the prediction of restenosis risk: computer modeling of stent trials. Biomed. Eng. Lett. 2(3):158–163, 2012.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Xiang Shen
    • 1
    Email author
  • Hongfei Zhu
    • 1
  • Jiabao Jiang
    • 1
  • Yongquan Deng
    • 1
  • Song Ji
    • 1
  1. 1.Department of Mechanical EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations