Advertisement

Cardiovascular Engineering and Technology

, Volume 9, Issue 3, pp 289–299 | Cite as

Computational Fluid Dynamics Assessment Associated with Transcatheter Heart Valve Prostheses: A Position Paper of the ISO Working Group

  • Zhenglun Alan Wei
  • Simon Johannes Sonntag
  • Milan Toma
  • Shelly Singh-Gryzbon
  • Wei Sun
Article

Abstract

The governing international standard for the development of prosthetic heart valves is International Organization for Standardization (ISO) 5840. This standard requires the assessment of the thrombus potential of transcatheter heart valve substitutes using an integrated thrombus evaluation. Besides experimental flow field assessment and ex vivo flow testing, computational fluid dynamics is a critical component of this integrated approach. This position paper is intended to provide and discuss best practices for the setup of a computational model, numerical solving, post-processing, data evaluation and reporting, as it relates to transcatheter heart valve substitutes. This paper is not intended to be a review of current computational technology; instead, it represents the position of the ISO working group consisting of experts from academia and industry with regards to considerations for computational fluid dynamic assessment of transcatheter heart valve substitutes.

Keywords

Computational fluid dynamics Fluid-structure interaction Prosthetic heart valves Thrombus assessment 

Notes

Acknowledgment

The authors would like to thank Dr. Ajit Yoganathan and other ISO TC 150 committee members for their suggestions and comments on the paper. Dr. Wei Sun and Dr. Simon Johannes Sonntag in the author list are ISO members, and Dr. Zhenglun Alan Wei, Dr. Milan Toma, and Dr. Shelly Singh-Gryzbon are not ISO members but they are experts in relevant fields who work with the ISO group to develop this document.

Conflict of interest

Zhenglun Wei, Milan Toma, Shelly Singh, and Wei Sun report no conflict of interest; Simon J. Sonntag is an employee of enmodes GmbH.

References

  1. 1.
    Adams, D. H., J. J. Popma, M. J. Reardon, S. J. Yakubov, J. S. Coselli, G. M. Deeb, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N. Engl. J. Med. 370(19):1790–1798, 2014.  https://doi.org/10.1056/NEJMoa1400590.CrossRefGoogle Scholar
  2. 2.
    Anand, M., and K. Rajagopal. A short review of advances in the modelling of blood rheology and clot formation. Fluids 2017.  https://doi.org/10.3390/fluids2030035.Google Scholar
  3. 3.
    Ballyk, P. D., D. A. Steinman, and C. R. Ethier. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology 31(5):565–586, 1994.CrossRefGoogle Scholar
  4. 4.
    Berg, P., S. Saalfeld, S. Voß, T. Redel, B. Preim, G. Janiga, et al. Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations. J. NeuroInterv. Surg. 13:290–296, 2017.Google Scholar
  5. 5.
    Bianchi, M., G. Marom, R. P. Ghosh, H. A. Fernandez, J. R. Taylor, Jr, M. J. Slepian, et al. Effect of balloon-expandable transcatheter aortic valve replacement positioning: a patient-specific numerical model. Artif. Org. 40(12):E292–E304, 2016.  https://doi.org/10.1111/aor.12806.CrossRefGoogle Scholar
  6. 6.
    Bluestein, D., S. Einav, and M. J. Slepian. Device thrombogenicity emulation: a novel methodology for optimizing the thromboresistance of cardiovascular devices. J. Biomech. 46(2):338–344, 2013.  https://doi.org/10.1016/j.jbiomech.2012.11.033.CrossRefGoogle Scholar
  7. 7.
    Bruening, J., F. Hellmeier, P. Yevtushenko, M. Kelm, S. Nordmeyer, S. H. Sündermann, et al. Impact of patient-specific LVOT inflow profiles on aortic valve prosthesis and ascending aorta hemodynamics. J. Comput. Sci. 2017.  https://doi.org/10.1016/j.jocs.2017.11.005.Google Scholar
  8. 8.
    Chakravarty, T., L. Søndergaard, J. Friedman, O. De Backer, D. Berman, K. F. Kofoed, et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. The Lancet 6736(17):1–10, 2017.  https://doi.org/10.1016/S0140-6736(17)30757-2.Google Scholar
  9. 9.
    Committee, V. Standard for verification and validation in computational fluid dynamics and heat transfer. New York: American Society of Mechanical Engineers, 2009.Google Scholar
  10. 10.
    Dasi, L. P., H. Hatoum, A. Kheradvar, R. Zareian, S. H. Alavi, W. Sun, et al. On the mechanics of transcatheter aortic valve replacement. Ann. Biomed. Eng. 45(2):310–331, 2017.  https://doi.org/10.1007/s10439-016-1759-3.CrossRefGoogle Scholar
  11. 11.
    De Marchena, E., J. Mesa, S. Pomenti, C. M. y Kall, X. Marincic, K. Yahagi, et al. Thrombus formation following transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 8(5):728–739, 2015.  https://doi.org/10.1016/j.jcin.2015.03.005.CrossRefGoogle Scholar
  12. 12.
    Egbe, A. C., S. V. Pislaru, P. A. Pellikka, J. T. Poterucha, H. V. Schaff, J. J. Maleszewski, et al. Bioprosthetic valve thrombosis versus structural failure: clinical and echocardiographic predictors. J. Am. Coll. Cardiol. 66(21):2285–2294, 2015.  https://doi.org/10.1016/j.jacc.2015.09.022.CrossRefGoogle Scholar
  13. 13.
    Ferziger, J. H., and M. Peric. Computational Methods for Fluid Dynamics. Berlin: Springer, 2012.zbMATHGoogle Scholar
  14. 14.
    Filipovic, N., D. Ravnic, M. Kojic, S. J. Mentzer, S. Haber, and A. Tsuda. Interactions of blood cell constituents: experimental investigation and computational modeling by discrete particle dynamics algorithm. Microvasc. Res. 75(2):279–284, 2008.  https://doi.org/10.1016/j.mvr.2007.09.007.CrossRefGoogle Scholar
  15. 15.
    Fogelson, A. L., and K. B. Neeves. Fluid mechanics of blood clot formation. Annu. Rev. Fluid Mech. 47(1):377–403, 2015.  https://doi.org/10.1146/annurev-fluid-010814-014513.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fraser, K. H., M. E. Taskin, B. P. Griffith, and Z. J. Wu. The use of computational fluid dynamics in the development of ventricular assist devices. Med. Eng. Phys. 33(3):263–280, 2011.  https://doi.org/10.1016/j.medengphy.2010.10.014.CrossRefGoogle Scholar
  17. 17.
    Fung, Y.-C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.CrossRefGoogle Scholar
  18. 18.
    Ge, L., S. C. Jones, F. Sotiropoulos, T. M. Healy, and A. P. Yoganathan. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J. Biomech. Eng. 125(5):709–718, 2003.  https://doi.org/10.1115/1.1614817.CrossRefGoogle Scholar
  19. 19.
    Gravel, G. M., and P. Généreux. Exploring the role of transcatheter aortic valve replacement as the preferred treatment for lower-risk patients. J. Am. Coll. Cardiol. 66(14):1638–1639, 2015.  https://doi.org/10.1016/j.jacc.2015.06.1346.CrossRefGoogle Scholar
  20. 20.
    Hansson, N. C., E. L. Grove, H. R. Andersen, J. Leipsic, O. N. Mathiassen, J. M. Jensen, et al. Transcatheter aortic valve thrombosis: incidence, predisposing factors, and clinical implications. J. Am. Coll. Cardiol. 68(19):2059–2069, 2016.  https://doi.org/10.1016/j.jacc.2016.08.010.CrossRefGoogle Scholar
  21. 21.
    Hariharan, P., G. A. D’Souza, M. Horner, T. M. Morrison, R. A. Malinauskas, and M. R. Myers. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations. PLoS ONE. 12(6):e0178749, 2017.  https://doi.org/10.1371/journal.pone.0178749.CrossRefGoogle Scholar
  22. 22.
    Holmes, D. R., and M. J. Mack. Aortic valve bioprostheses: leaflet immobility and valve thrombosis. Circulation 135(18):1749–1756, 2017.  https://doi.org/10.1161/CIRCULATIONAHA.116.025429.CrossRefGoogle Scholar
  23. 23.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61(1–3):1–48, 2000.  https://doi.org/10.1023/A:1010835316564.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    International Standards O. ISO 5840-3:2013 cardiovascular implants—cardiac valve prostheses. Part 3: heart valve substitutes implanted by transcatheter techniques. 2013.Google Scholar
  25. 25.
    Karimi, S., M. Dabagh, P. Vasava, M. Dadvar, B. Dabir, and P. Jalali. Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J. Non-Newton. Fluid Mech. 207:42–52, 2014.  https://doi.org/10.1016/j.jnnfm.2014.03.007.CrossRefGoogle Scholar
  26. 26.
    Kheradvar, A., E. M. Groves, A. Falahatpisheh, M. K. Mofrad, S. Hamed Alavi, R. Tranquillo, et al. Emerging trends in heart valve engineering: part IV. Computational modeling and experimental studies. Ann. Biomed. Eng. 43(10):2314–2333, 2015.  https://doi.org/10.1007/s10439-015-1394-4.CrossRefGoogle Scholar
  27. 27.
    Laschinger, J. C., C. Wu, N. G. Ibrahim, and J. E. Shuren. Reduced leaflet motion in bioprosthetic aortic valves-the FDA perspective. N. Engl. J. Med. 373(21):1996–1998, 2015.  https://doi.org/10.1056/NEJMp1512264.CrossRefGoogle Scholar
  28. 28.
    Leetmaa, T., N. C. Hansson, J. Leipsic, K. Jensen, S. H. Poulsen, H. R. Andersen, et al. Early aortic transcatheter heart valve thrombosis: diagnostic value of contrast-enhanced multidetector computed tomography. Circ. Cardiovasc. Interv. 2015.  https://doi.org/10.1161/circinterventions.114.001596.Google Scholar
  29. 29.
    Leon, M. B. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363(17):1597–1607, 2010.  https://doi.org/10.1056/NEJMoa1008232.CrossRefGoogle Scholar
  30. 30.
    Leon, M. B., C. R. Smith, M. J. Mack, R. R. Makkar, L. G. Svensson, S. K. Kodali, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 374(17):1609–1620, 2016.  https://doi.org/10.1056/NEJMoa1514616.CrossRefGoogle Scholar
  31. 31.
    Makkar, R. R., G. Fontana, H. Jilaihawi, T. Chakravarty, K. F. Kofoed, O. de Backer, et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 373(21):2015–2024, 2015.  https://doi.org/10.1056/NEJMoa1509233.CrossRefGoogle Scholar
  32. 32.
    Malinauskas, R. A., P. Hariharan, S. W. Day, L. H. Herbertson, M. Buesen, U. Steinseifer, et al. FDA benchmark medical device flow models for CFD validation. ASAIO J. 63(2):150–160, 2017.CrossRefGoogle Scholar
  33. 33.
    Mao, W., K. Li, and W. Sun. Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol. 7(4):374–388, 2016.  https://doi.org/10.1007/s13239-016-0285-7.CrossRefGoogle Scholar
  34. 34.
    Marom, G. Numerical methods for fluid-structure interaction models of aortic valves. Arch. Comput. Methods Eng. 22(4):595–620, 2014.  https://doi.org/10.1007/s11831-014-9133-9.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Marsden, A. L. Multi-scale modeling of cardiovascular flows. In: Computational Bioengineering. CRC Press, 2015, pp. 163–189.Google Scholar
  36. 36.
    Midha, P. A., V. Raghav, R. Sharma, J. F. Condado, I. U. Okafor, T. Rami, et al. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neo-sinus. Circulation 2017.  https://doi.org/10.1161/CIRCULATIONAHA.117.029479.Google Scholar
  37. 37.
    Min Yun, B., C. K. Aidun, and A. P. Yoganathan. Blood damage through a bileaflet mechanical heart valve: a quantitative computational study using a multiscale suspension flow solver. J. Biomech. Eng. 136(10):101009, 2014.  https://doi.org/10.1115/1.4028105.CrossRefGoogle Scholar
  38. 38.
    Moghadam, M. E., F. Migliavacca, I. E. Vignon-Clementel, T.-Y. Hsia, and A. L. Marsden. Optimization of shunt placement for the Norwood surgery using multi-domain modeling. J. Biomech. Eng. 134(5):051002, 2012.  https://doi.org/10.1115/1.4006814.CrossRefGoogle Scholar
  39. 39.
    Nishimura, R. A., Otto, C. M., Bonow, R. O., Ruiz, C. E., Skubas, N. J., and Sorajja, P. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2014.Google Scholar
  40. 40.
    Oberkampf, W. L., and T. G. Trucano. Verification and validation benchmarks. Nucl. Eng. Des. 238(3):716–743, 2008.  https://doi.org/10.1016/j.nucengdes.2007.02.032.CrossRefGoogle Scholar
  41. 41.
    Piatti, F., F. Sturla, G. Marom, J. Sheriff, T. E. Claiborne, M. J. Slepian, et al. Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid-structure interaction approach. J. Biomech. 48(13):3650–3658, 2015.  https://doi.org/10.1016/j.jbiomech.2015.08.009.CrossRefGoogle Scholar
  42. 42.
    Piazza, N., B. Kalesan, N. van Mieghem, S. Head, P. Wenaweser, T. P. Carrel, et al. A 3-center comparison of 1-year mortality outcomes between transcatheter aortic valve implantation and surgical aortic valve replacement on the basis of propensity score matching among intermediate-risk surgical patients. JCIN 6(5):443–451, 2013.  https://doi.org/10.1016/j.jcin.2013.01.136.Google Scholar
  43. 43.
    Popma, J. J., D. H. Adams, M. J. Reardon, S. J. Yakubov, N. S. Kleiman, D. Heimansohn, et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J. Am. Coll. Cardiol. 63(19):1972–1981, 2014.  https://doi.org/10.1016/j.jacc.2014.02.556.CrossRefGoogle Scholar
  44. 44.
    Quarteroni, A., S. Ragni, and A. Veneziani. Coupling between lumped and distributed models for blood flow problems. Comput. Vis. Sci. 4(2):111–124, 2001.  https://doi.org/10.1007/s007910100063.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Quarteroni, A., A. Veneziani, and C. Vergara. Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 302:193–252, 2016.  https://doi.org/10.1016/j.cma.2016.01.007.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Reporting of Computational Modeling Studies in Medical Device Submissions. https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM381813.pdf.
  47. 47.
    Sagar, A., and J. Varner. Dynamic modeling of the human coagulation cascade using reduced order effective kinetic models. Processes 3(4):178–203, 2015.  https://doi.org/10.3390/pr3010178.CrossRefGoogle Scholar
  48. 48.
    Schwer, L. E. An overview of the PTC 60/V&V 10: guide for verification and validation in computational solid mechanics. Eng. Comput. 23(4):245–252, 2007.  https://doi.org/10.1007/s00366-007-0072-z.CrossRefGoogle Scholar
  49. 49.
    Siguenza, J., D. Pott, S. Mendez, S. J. Sonntag, T. A. S. Kaufmann, U. Steinseifer, et al. Fluid-structure interaction of a pulsatile flow with an aortic valve model: a combined experimental and numerical study. Int. J. Numer. Method Biomed. Eng. 2017.  https://doi.org/10.1002/cnm.2945.Google Scholar
  50. 50.
    Smith, C. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364(23):2187–2198, 2011.  https://doi.org/10.1056/NEJMoa1103510.CrossRefGoogle Scholar
  51. 51.
    Sonntag, S. J., M. Kutting, P. F. Ghalati, T. Kaufmann, J. Vazquez-Jimenez, U. Steinseifer, et al. Effect of pulmonary conduit oversizing on hemodynamics in children. Int. J. Artif. Org. 38(10):548–556, 2015.  https://doi.org/10.5301/ijao.5000443.CrossRefGoogle Scholar
  52. 52.
    Sun, W., C. Martin, and T. Pham. Computational modeling of cardiac valve function and intervention. Annu. Rev. Biomed. Eng. 16(1):53–76, 2014.  https://doi.org/10.1146/annurev-bioeng-071813-104517.CrossRefGoogle Scholar
  53. 53.
    Sun, W., and M. S. Sacks. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4(2–3):190–199, 2005.  https://doi.org/10.1007/s10237-005-0075-x.CrossRefGoogle Scholar
  54. 54.
    Tamburino, C., M. Barbanti, P. D. E. Rs, M. Ranucci, F. Onorati, R. D. Covello, et al. 1-Year outcomes after transfemoral transcatheter or surgical aortic valve replacement. J. Am. Coll. Cardiol. 66(7):804–812, 2015.  https://doi.org/10.1016/j.jacc.2015.06.013.CrossRefGoogle Scholar
  55. 55.
    Taylor, J. O., B. C. Good, A. V. Paterno, P. Hariharan, S. Deutsch, R. A. Malinauskas, et al. Analysis of transitional and turbulent flow through the FDA benchmark nozzle model using laser doppler velocimetry. Cardiovasc. Eng. Technol. 7(3):191–209, 2016.  https://doi.org/10.1007/s13239-016-0270-1.CrossRefGoogle Scholar
  56. 56.
    Thyregod, H. G. H., S. Daniel Andreas, I. Nikolaj, and H. Nissen. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis. J. Am. Coll. Cardiol. 65(20):2184–2194, 2015.  https://doi.org/10.1016/j.jacc.2015.03.014.CrossRefGoogle Scholar
  57. 57.
    Toma, M., A. Krdey, S. Takagi, and M. Oshima. Strongly coupled fluid-structure interaction cardiovascular analysis with the effect of peripheral network. SEISAN KENKYU 63(3):339–344, 2011.  https://doi.org/10.11188/seisankenkyu.63.339.Google Scholar
  58. 58.
    Tosenberger, A., F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, and V. Volpert. Modelling of platelet-fibrin clot formation in flow with a DPD-PDE method. J. Math. Biol. 72(3):649–681, 2016.  https://doi.org/10.1007/s00285-015-0891-2.MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Vy, P., V. Auffret, P. Badel, M. Rochette, H. Le Breton, P. Haigron, et al. Review of patient-specific simulations of transcatheter aortic valve implantation. Int. J. Adv. Eng. Sci. Appl. Math. 8(1):2–24, 2015.  https://doi.org/10.1007/s12572-015-0139-9.MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Wang, Q., S. Kodali, C. Primiano, and W. Sun. Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomech. Model Mechanobiol. 14(1):29–38, 2015.  https://doi.org/10.1007/s10237-014-0583-7.CrossRefGoogle Scholar
  61. 61.
    Wang, Q., C. Primiano, R. McKay, S. Kodali, and W. Sun. CT image-based engineering analysis of transcatheter aortic valve replacement. JACC Cardiovasc. Imaging 7(5):526–528, 2014.  https://doi.org/10.1016/j.jcmg.2014.03.006.CrossRefGoogle Scholar
  62. 62.
    Wei, Z. A., M. Tree, P. M. Trusty, W. Wu, S. Singh-Gryzbon, and A. Yoganathan. The advantages of viscous dissipation rate over simplified power loss as a fontan hemodynamic metric. Ann. Biomed. Eng. 2017.  https://doi.org/10.1007/s10439-017-1950-1.Google Scholar
  63. 63.
    Wei, Z., and Z. C. Zheng. Mechanisms of wake deflection angle change behind a heaving airfoil. J. Fluid Struct. 48:1–13, 2014.  https://doi.org/10.1016/j.jfluidstructs.2014.02.010.CrossRefGoogle Scholar
  64. 64.
    Wei, Z. A., and Z. C. Zheng. Fluid-structure-interaction simulation on energy harvesting from vortical flows by a passive heaving foil. J. Fluids Eng. 140(1):011105, 2017.CrossRefGoogle Scholar
  65. 65.
    Wu, W. T., M. A. Jamiolkowski, W. R. Wagner, N. Aubry, M. Massoudi, and J. F. Antaki. Multi-constituent simulation of thrombus deposition. Sci. Rep. 7:42720, 2017.  https://doi.org/10.1038/srep42720.CrossRefGoogle Scholar
  66. 66.
    Wu, W., D. Pott, B. Mazza, T. Sironi, E. Dordoni, C. Chiastra, et al. Fluid-structure interaction model of a percutaneous aortic valve: comparison with an in vitro test and feasibility study in a patient-specific case. Ann. Biomed. Eng. 44(2):590–603, 2016.  https://doi.org/10.1007/s10439-015-1429-x.CrossRefGoogle Scholar
  67. 67.
    Xu, Z., N. Chen, M. M. Kamocka, E. D. Rosen, and M. Alber. A multiscale model of thrombus development. J. R. Soc. Interface 5(24):705–722, 2008.  https://doi.org/10.1098/rsif.2007.1202.CrossRefGoogle Scholar
  68. 68.
    Xu, Z., J. Lioi, J. Mu, M. M. Kamocka, X. Liu, D. Z. Chen, et al. A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys. J. 98(9):1723–1732, 2010.  https://doi.org/10.1016/j.bpj.2009.12.4331.CrossRefGoogle Scholar
  69. 69.
    Yun, B. M., L. P. Dasi, C. K. Aidun, and A. P. Yoganathan. Computational modelling of flow through prosthetic heart valves using the entropic lattice-Boltzmann method. J. Fluid Mech. 743:170–201, 2014.  https://doi.org/10.1017/jfm.2014.54.CrossRefGoogle Scholar
  70. 70.
    Yun, B. M., L. P. Dasi, C. K. Aidun, and A. P. Yoganathan. Highly resolved pulsatile flows through prosthetic heart valves using the entropic lattice-Boltzmann method. J. Fluid Mech. 754:122–160, 2014.  https://doi.org/10.1017/jfm.2014.393.MathSciNetCrossRefGoogle Scholar
  71. 71.
    Yun, B. M., D. B. McElhinney, S. Arjunon, L. Mirabella, C. K. Aidun, and A. P. Yoganathan. Computational simulations of flow dynamics and blood damage through a bileaflet mechanical heart valve scaled to pediatric size and flow. J. Biomech. 47(12):3169–3177, 2014.  https://doi.org/10.1016/j.jbiomech.2014.06.018.CrossRefGoogle Scholar
  72. 72.
    Zakaria, M. S., F. Ismail, M. Tamagawa, A. F. A. Aziz, S. Wiriadidjaja, A. A. Basri, et al. Review of numerical methods for simulation of mechanical heart valves and the potential for blood clotting. Med. Biol. Eng. Comput. 55(9):1519–1548, 2017.  https://doi.org/10.1007/s11517-017-1688-9.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Zhenglun Alan Wei
    • 1
  • Simon Johannes Sonntag
    • 2
  • Milan Toma
    • 1
    • 3
  • Shelly Singh-Gryzbon
    • 1
  • Wei Sun
    • 1
  1. 1.Wallace H. Coulter School of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.enmodes GmbHAachenGermany
  3. 3.Department of Mechanical Engineering, School of Engineering & Computing SciencesNew York Institute of TechnologyNew YorkUSA

Personalised recommendations