Cardiovascular Engineering and Technology

, Volume 9, Issue 2, pp 226–239 | Cite as

Pressure and Flow Rate Changes During Contrast Injections in Cerebral Angiography: Correlation to Reflux Length

  • Brandon Kovarovic
  • Henry H. Woo
  • David Fiorella
  • Baruch B. Lieber
  • Chander SadasivanEmail author


Cerebral angiography involves the antegrade injection of contrast media through a catheter into the vasculature to visualize the region of interest under X-ray imaging. Depending on the injection and blood flow parameters, the bolus of contrast can propagate in the upstream direction and proximal to the catheter tip, at which point contrast is said to have refluxed. In this in vitro study, we investigate the relationship of fundamental hemodynamic variables to this phenomenon. Contrast injections were carried out under steady and pulsatile flow using various vessel diameters, catheter sizes, working fluid flow rates, and injection rates. The distance from the catheter tip to the proximal edge of the contrast bolus, called reflux length, was measured on the angiograms; the relation of this reflux length to different hemodynamic parameters was evaluated. Results show that contrast reflux occurs when the pressure distal to the catheter tip increases to be greater than the pressure proximal to the catheter tip. The ratio of this pressure difference to the baseline flow rate, called reflux resistance here, was linearly correlated to the normalized reflux length (reflux length/vessel diameter). Further, the ratio of blood flow to contrast fluid momentums, called the Craya–Curtet number, was correlated to the normalized reflux length via a sigmoid function. A sigmoid function was also found to be representative of the relationship between the ratio of the Reynolds numbers of blood flow to contrast and the normalized reflux length. As described by previous reports, catheter based contrast injections cause substantial increases in local flow and pressure. Contrast reflux should generally be avoided during standard antegrade angiography. Our study shows two specific correlations between contrast reflux length and baseline and intra-injection parameters that have not been published previously. Further studies need to be conducted to fully characterize the phenomena and to extract reliable indicators of clinical utility. Parameters relevant to cerebral angiography are studied here, but the essential principles are applicable to all angiographic procedures involving antegrade catheter injections.


Reflux length Efflux length Craya–Curtet number Pressure gradient Reflux resistance Logistic function 


Conflict of interest

Author BK is partly employed by Vascular Simulations LLC. All other authors have stock ownership in Vascular Simulations LLC.

Human/animal studies

No human or animal studies were carried out by the authors for this article.

Supplementary material

Supplementary material 1 (AVI 201 kb)


  1. 1.
    Aviram, G., D. Cohen, A. Steinvil, H. Shmueli, G. Keren, S. Banai, et al. Significance of reflux of contrast medium into the inferior vena cava on computerized tomographic pulmonary angiogram. Am. J. Cardiol. 109(3):432–437, 2012. Scholar
  2. 2.
    Becker, H. A. Discussion:“Confined jet mixing for nonseparating conditions”(Razinsky, E., and Brighton, JA, 1971, ASME J. Basic Eng., 93, pp. 333–347). J. Basic Eng. 93(3):347, 1971.Google Scholar
  3. 3.
    Celtikci, P., O. Eraslan, O. Ergun, E. Soyer Guldogan, and M. E. Turkoglu. Active rebleeding from a ruptured middle cerebral artery aneurysm during diagnostic catheter angiography. Turk Neurosurg. 2017. Scholar
  4. 4.
    Demirpolat, G., M. Yuksel, G. Kavukcu, and D. Tuncel. Carotid CT angiography: comparison of image quality for left versus right arm injections. Diagn. Interv. Radiol. 17(3):195–198, 2011. Scholar
  5. 5.
    Dublin, A. B., and B. N. French. Cerebral aneurysmal rupture during angiography with confirmation by computed tomography: a review of intra-angiographic aneurysmal rupture. Surg. Neurol. 13(1):19–26, 1980.Google Scholar
  6. 6.
    Dusaj, R. S., K. C. Michelis, M. Terek, R. Sanai, R. Mittal, J. F. Lewis, et al. Estimation of right atrial and ventricular hemodynamics by CT coronary angiography. J Cardiovasc Comput Tomogr. 5(1):44–49, 2011. Scholar
  7. 7.
    Endres, J., Redel, T., Kowarschik, M., Hutter, J., Hornegger, J., Doerfler, A. (eds.). Virtual angiography using CFD simulations based on patient-specific parameter optimization. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), IEEE, 2012.Google Scholar
  8. 8.
    Ford, M. D., G. R. Stuhne, H. N. Nikolov, D. F. Habets, S. P. Lownie, D. W. Holdsworth, et al. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans. Med. Imaging 24(12):1586–1592, 2005.CrossRefGoogle Scholar
  9. 9.
    Genereux, P., R. Mehran, M. B. Leon, N. Bettinger, and G. W. Stone. Classification for assessing the quality of diagnostic coronary angiography. J. Invasive Cardiol. 29:417–420, 2017.Google Scholar
  10. 10.
    Gianturco, C., T. Shimizu, F. R. Stefferda, and R. P. Taylor. Measurement of blood flow by angiography with increasing rate of injection: experimental study. Investig. Radiol. 5(5):361–363, 1970.CrossRefGoogle Scholar
  11. 11.
    Hao, Q., and B. B. Lieber. Dispersive transport of angiographic contrast during antegrade arterial injection. Cardiovasc. Eng. Technol. 3(2):171–178, 2012.CrossRefGoogle Scholar
  12. 12.
    Hayakawa, K., T. W. Morris, R. W. Katzberg, and H. W. Fischer. Cardiovascular responses to the intravertebral artery injection of hypertonic contrast media in the dog. Investig. Radiol. 20(2):217–221, 1985.CrossRefGoogle Scholar
  13. 13.
    Henriksen, J. H., G. B. Jensen, and H. B. Larsson. A century of indicator dilution technique. Clin. Physiol. Funct. Imaging 34(1):1–9, 2014. Scholar
  14. 14.
    Hilal, S. K. Hemodynamic changes associated with the intra-arterial injection of contrast media. New toxicity tests and a new experimental contrast medium. Radiology 86(4):615–633, 1966. Scholar
  15. 15.
    Hingwala, D. R., B. Thomas, C. Kesavadas, and T. R. Kapilamoorthy. Suboptimal contrast opacification of dynamic head and neck MR angiography due to venous stasis and reflux: technical considerations for optimization. AJNR Am. J. Neuroradiol. 32(2):310–314, 2011. Scholar
  16. 16.
    Huang, B., J. Chang, C. Wang, and V. Petrenko. A 1-D analysis of ejector performance. Int. J. Refrig. 22(5):354–364, 1999.CrossRefGoogle Scholar
  17. 17.
    Kaye, D. M., D. Stub, V. Mak, T. Doan, and S. J. Duffy. Reducing iodinated contrast volume by manipulating injection pressure during coronary angiography. Catheter. Cardiovasc. Interv. 83(5):741–745, 2014. Scholar
  18. 18.
    Keenan, J. H., E. P. Neumann, and F. Lustwerk. An investigation of ejector design by analysis and experiment. Cambridge, MA: Massachusetts Institute of Technology, Guided Missiles Program, 1948.Google Scholar
  19. 19.
    Kusumi, M., M. Yamada, T. Kitahara, M. Endo, S. Kan, H. Iida, et al. Rerupture of cerebral aneurysms during angiography–a retrospective study of 13 patients with subarachnoid hemorrhage. Acta Neurochir. (Wien) 147(8):831–837, 2005. Scholar
  20. 20.
    Levin, D. C. Augmented arterial flow and pressure resulting from selective injections through catheters: clinical implications. Radiology 127(1):103–108, 1978. Scholar
  21. 21.
    Levin, D. C., D. A. Phillips, S. Lee-Son, and P. R. Maroko. Hemodynamic changes distal to selective arterial injections. Investig. Radiol. 12(2):116–120, 1977.CrossRefGoogle Scholar
  22. 22.
    Lieber, B. B., C. Sadasivan, M. J. Gounis, J. Seong, L. Miskolczi, and A. K. Wakhloo. Functional angiography. Crit. Rev. Biomed. Eng. 33(1):1–102, 2005.CrossRefGoogle Scholar
  23. 23.
    Lieber, B. B., C. Sadasivan, Q. Hao, J. Seong, and L. Cesar. The mixability of angiographic contrast with arterial blood. Med. Phys. 36(11):5064–5078, 2009. Scholar
  24. 24.
    Mabon, R. F., P. D. Soder, W. A. Carpenter, and D. P. Giddens. Fluid dynamics in cerebral angiography. Radiology 128(3):669–676, 1978. Scholar
  25. 25.
    Morris, T. W., M. Francis, and H. W. Fischer. A comparison of the cardiovascular responses to carotid injections of ionic and nonionic contrast media. Investig. Radiol. 14(3):217–223, 1979.Google Scholar
  26. 26.
    Morris, T. W., and C. S. Walike. An in vitro study of the hemodynamic effects of catheter injections. Investig. Radiol. 24(5):361–365, 1989.CrossRefGoogle Scholar
  27. 27.
    Mulder, G., A. Bogaerds, P. Rongen, and F. van de Vosse. The influence of contrast agent injection on physiological flow in the circle of Willis. Med. Eng. Phys. 33(2):195–203, 2011.CrossRefGoogle Scholar
  28. 28.
    Prasad, A., C. Ortiz-Lopez, D. M. Kaye, M. Byrne, S. Nanayakkara, S. H. Ahmed, et al. The use of the AVERT system to limit contrast volume administration during peripheral angiography and intervention. Catheter. Cardiovasc. Interv. 86(7):1228–1233, 2015. Scholar
  29. 29.
    Razinsky, E., and J. Brighton. Confined jet mixing for nonseparating conditions. J. Basic Eng. 93(3):333–347, 1971.CrossRefGoogle Scholar
  30. 30.
    Rosengarten, B., M. K. Steen-Muller, A. Muller, H. Traupe, R. K. Voss, and M. Kaps. Contrast media effect on cerebral blood flow regulation after performance of cerebral or coronary angiography. Cerebrovasc. Dis. 16(1):42–46, 2003.CrossRefGoogle Scholar
  31. 31.
    Saitoh, H., K. Hayakawa, K. Nishimura, Y. Okuno, C. Murayama, T. Miyazawa, et al. Intracarotid blood pressure changes during contrast medium injection. AJNR Am. J. Neuroradiol. 17(1):51–54, 1996.Google Scholar
  32. 32.
    Saitoh, H., K. Hayakawa, K. Nishimura, Y. Okuno, T. Teraura, K. Yumitori, et al. Rerupture of cerebral aneurysms during angiography. Am. J. Neuroradiol. 16(3):539–542, 1995.Google Scholar
  33. 33.
    Sampei, T., N. Yasui, M. Mizuno, S. Nakajima, T. Ishikawa, H. Hadeishi, et al. Contrast medium extravasation during cerebral angiography for ruptured intracranial aneurysm; clinical analysis of 26 cases. Neurol. Med. Chir. 30(13):1011–1015, 1990. Scholar
  34. 34.
    Shpilfoygel, S. D., R. A. Close, D. J. Valentino, and G. R. Duckwiler. X-ray videodensitometric methods for blood flow and velocity measurement: a critical review of literature. Med. Phys. 27(9):2008–2023, 2000. Scholar
  35. 35.
    Singh, G. Entrainment and mixing studies for a variable density confined jet. Numer. Heat Transf. Part A Appl. 35(2):205–224, 1999.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Skorczewski, T., L. C. Erickson, and A. L. Fogelson. Platelet motion near a vessel wall or thrombus surface in two-dimensional whole blood simulations. Biophys. J. 104(8):1764–1772, 2013.CrossRefGoogle Scholar
  37. 37.
    Stoel, M., J. Kandhai-Ragunath, G. Van Houwelingen, and C. Von Birgelen. Impact of dye injection on intracoronary pressure. EuroIntervention 5(2):272–276, 2009.CrossRefGoogle Scholar
  38. 38.
    Sun, Q., A. Groth, and T. Aach. Comprehensive validation of computational fluid dynamics simulations of in vivo blood flow in patient-specific cerebral aneurysms. Med. Phys. 39(2):742–754, 2012. Scholar
  39. 39.
    Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 219(1137):186, 1953.CrossRefGoogle Scholar
  40. 40.
    Vali, A., A. A. Abla, M. T. Lawton, D. Saloner, and V. L. Rayz. Computational Fluid Dynamics modeling of contrast transport in basilar aneurysms following flow-altering surgeries. J. Biomech. 50:195–201, 2017.CrossRefGoogle Scholar
  41. 41.
    Waldenberger, P., A. Chemelli, and A. Mallouhi. Intra-arterial haemodynamic changes during cerebral three-dimensional rotational angiography. Eur. Radiol. 19(2):503–508, 2009. Scholar
  42. 42.
    Wolf, G. L., D. D. Shaw, H. A. Baltaxe, K. Kilzer, and L. Kraft. A proposed mechanism for transient increases in arterial pressure and flow during angiographic injections. Investig. Radiol. 13(3):195–199, 1978.CrossRefGoogle Scholar
  43. 43.
    Woodfield, P. L. , Nakabe, K., Suzuki, K. (eds.). Numerical computation on recirculation flow structures in co-axial confined laminar jets. In: 14th Symposium on Computational Fluid Dynamics 2000. Japan: Japanese Society of Fluid Mechanics.Google Scholar
  44. 44.
    Yamashita, K., K. Hayakawa, M. Tanaka, and J. Konishi. Cardiovascular responses following the intracarotid injections of ionic and nonionic contrast media compared with various mannitol solutions. Correl. Osmolality Investig. Radiol. 23(9):680–686, 1988.Google Scholar
  45. 45.
    Yousem, D. M., and B. C. Trinh. Injection rates for neuroangiography: results of a survey. AJNR Am. J. Neuroradiol. 22(10):1838–1840, 2001.Google Scholar
  46. 46.
    Yule, A., and M. Damou. Investigations of ducted jets. Exp. Therm Fluid Sci. 4(4):469–490, 1991.CrossRefGoogle Scholar
  47. 47.
    Zaehringer, M., C. Wedekind, A. Gossmann, K. Krueger, G. Trenschel, and P. Landwehr. Aneurysmal re-rupture during selective cerebral angiography. Eur. Radiol. 12(Suppl 3):S18–S24, 2002. Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA
  2. 2.Department of Neurological SurgeryStony Brook UniversityStony BrookUSA

Personalised recommendations