Advertisement

Cardiovascular Engineering and Technology

, Volume 9, Issue 2, pp 193–201 | Cite as

Numerical Investigation of the Effect of Additional Pulmonary Blood Flow on Patient-Specific Bilateral Bidirectional Glenn Hemodynamics

  • Biao Si
  • Bin Qiao
  • Guang Yang
  • Meng Zhu
  • Fengyu Zhao
  • Tongjian Wang
  • Na Li
  • Xiaopeng Ji
  • Guanghong Ding
Article

Abstract

The effect of additional pulmonary blood flow (APBF) on the hemodynamics of bilateral bidirectional Glenn (BBDG) connection was marginally discussed in previous studies. This study assessed this effect using patient-specific numerical simulation. A 15-year-old female patient who underwent BBDG was enrolled in this study. Patient-specific anatomy, flow waveforms, and pressure tracings were obtained using computed tomography, Doppler ultrasound technology, and catheterization, respectively. Computational fluid dynamic simulations were performed to assess flow field and derived hemodynamic metrics of the BBDG connection with various APBF. APBF showed noticeable effects on the hemodynamics of the BBDG connection. It suppressed flow mixing in the connection, which resulted in a more antegrade flow structure. Also, as the APBF rate increases, both power loss and reflux in superior venae cavae (SVCs) monotonically increases while the flow ratio of the right to the left pulmonary artery (RPA/LPA) monotonically decreases. However, a non-monotonic relationship was observed between the APBF rate and indexed power loss. A high APBF rate may result in a good flow ratio of RPA/LPA but with the side effect of bad power loss and remarkable reflux in SVCs, and vice versa. A moderate APBF rate could be favourable because it leads to an optimal indexed power loss and achieves the acceptable flow ratio of RPA/LPA without causing severe power loss and reflux in SVCs. These findings suggest that patient-specific numerical simulation should be used to assist clinicians in determining an appropriate APBF rate based on desired outcomes on a patient-specific basis.

Keywords

Computational fluid dynamics Single ventricle defects Glenn procedure Additional pulmonary blood flow 

Notes

Acknowledgments

We are grateful to Xudong Liu and Jialiang Chen for technical support in performing the study. We heartily appreciate the selfless exertion and precious suggestions from my teachers and collègues.

Conflict of interest

All authors declare that they have no conflict of interest.

Funding

This study was funded by National Key Basic Research Program of China (Grant Number 2013CB945403).

Ethical Approval

This article does not contain any studies with animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Amodeo, A., and R. M. Di Donato. The unifocal bilateral bidirectional cavopulmonary anastomosis. Ann. Thorac. Surg. 84:2134–2135, 2007.CrossRefGoogle Scholar
  2. 2.
    Amodeo, A., M. Grigioni, S. Filippelli, M. G. Gagliardi, C. Del Gaudio, U. Morbiducci, G. D’Avenio, G. Brancaccio, and R. M. Di Donato. Improved management of systemic venous anomalies in a single ventricle: new rationale. J. Thorac. Cardiovasc. Surg. 138:1154–1159, 2009.CrossRefGoogle Scholar
  3. 3.
    Bazilevs, Y., M. H. D. J. Benson, S. S. A. L. Marsden, M. M.-C. Hsu, D. J. D. Benson, S. Sankaran, and A. L. Marsden. Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput. Mech. 45:77–89, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bove, E. L., M. R. de Leval, F. Migliavacca, G. Guadagni, and G. Dubini. Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the norwood procedure for hypoplastic left heart syndrome. unfiled. J. Thorac. Cardiovasc. Surg. 126:1040–1047, 2003.CrossRefGoogle Scholar
  5. 5.
    Calvaruso, D. F., A. Rubino, S. Ocello, et al. Bidirectional Glenn and antegrade pulmonary blood flow: temporary or definitive palliation? Ann. Thorac. Surgery 2008.  https://doi.org/10.1016/j.athoracsur.2008.01.013.Google Scholar
  6. 6.
    Dasi, L. P., K. Pekkan, D. de Zelicourt, K. S. Sundareswaran, R. Krishnankutty, P. J. Delnido, and A. P. Yoganathan. Hemodynamic energy dissipation in the cardiovascular system: generalized theoretical analysis on disease states. Ann. Biomed. Eng. 37:661–673, 2009.CrossRefGoogle Scholar
  7. 7.
    Dasi, L. P., K. Pekkan, H. D. Katajima, and A. P. Yoganathan. Functional analysis of Fontan energy dissipation. J. Biomech. 41:2246–2252, 2008.CrossRefGoogle Scholar
  8. 8.
    de Leval, M. R., G. Dubini, F. Migliavacca, H. Jalali, G. Camporini, A. Redington, and R. Pietrabissa. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J. Thorac. Cardiovasc. Surg. 111:502–513, 1996.CrossRefGoogle Scholar
  9. 9.
    de Zélicourt, D. A., C. M. Haggerty, K. S. Sundareswaran, et al. Individualized computer-based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation. J. Thorac. Cardiovasc. Surg. 141:1170–1177, 2011.CrossRefGoogle Scholar
  10. 10.
    Dubini, G., F. Migliavacca, G. Pennati, Leval M. R. De, and E. L. Bove. Ten years of modelling to achieve haemodynamic optimisation of the Total Cavopulmonary Connection. Biorheology 14:48–52, 2004.Google Scholar
  11. 11.
    Elhinney, D. B. M. C., V. M. Reddy, F. L. Hanley, and P. Moore. Systemic venous collateral channels causing desaturation after bidirectional cavopulmonary anastomosis: evaluation and management. J. Am. Coll. Cardiol. 30:817–824, 1997.CrossRefGoogle Scholar
  12. 12.
    Esmaily Moghadam, M., I. E. Vignon-Clementel, R. Figliola, and A. L. Marsden. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys. 244:63–79, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gandy, K., and F. Hanley. Management of systemic venous anomalies in the pediatric cardiovascular surgical patient. Semin. Thorac. Cardiovasc. Surg. 1:63–74, 2006.CrossRefGoogle Scholar
  14. 14.
    Gerelli, S., C. Boulitrop, M. Van Steenberghe, D. Maldonado, M. Bojan, O. Raisky, D. Sidi, and P. R. Vouhe. Bidirectional cavopulmonary shunt with additional pulmonary blood flow: a failed or successful strategy? Eur. J. Cardiothorac. Surg. 42:513–519, 2012.CrossRefGoogle Scholar
  15. 15.
    Ghoreyshi, M., M. S. Saidi, M. A. Navabi, B. D. Firoozabadi, and R. Shabanian. Numerical investigation of Antegrade Flow effects on fl ow pulsations in Fontan operation. Int. J. Biomed. Eng. Technol. 2012.  https://doi.org/10.1504/IJBET.2012.050291.Google Scholar
  16. 16.
    Haggerty, C., and D. de Zélicourt. Comparing pre-and post-operative Fontan hemodynamic simulations: implications for the reliability of surgical planning. Ann Biomed 40:2639–2651, 2012.CrossRefGoogle Scholar
  17. 17.
    Haggerty, C. M., K. K. Whitehead, J. Bethel, M. A. Fogel, and A. P. Yoganathan. Relationship of single ventricle filling and preload to total cavopulmonary connection hemodynamics. Ann. Thorac. Surg. 99:911–917, 2015.CrossRefGoogle Scholar
  18. 18.
    Honjo, O., K. C. D. Tran, Z. Hua, P. Sapra, A. A. Alghamdi, J. L. Russell, C. A. Caldarone, and G. S. Van Arsdell. Impact of evolving strategy on clinical outcomes and central pulmonary artery growth in patients with bilateral superior vena cava undergoing a bilateral bidirectional cavopulmonary shunt. J. Thorac. Cardiovasc. Surg. 140:528.e1, 2010.CrossRefGoogle Scholar
  19. 19.
    Kaufmann, T. A. S., M. Neidlin, M. Büsen, S. J. Sonntag, and U. Steinseifer. Implementation of intrinsic lumped parameter modeling into computational fluid dynamics studies of cardiopulmonary bypass. J. Biomech. 47:729–735, 2014.CrossRefGoogle Scholar
  20. 20.
    Khiabani, R. H., K. K. Whitehead, D. Han, M. Restrepo, E. Tang, J. Bethel, S. M. Paridon, M. A. Fogel, and A. P. Yoganathan. Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart 101:139–143, 2015.CrossRefGoogle Scholar
  21. 21.
    Kurotobi, S. Bidirectional cavopulmonary shunt with right ventricular outflow patency: the impact of pulsatility on pulmonary endothelial function. J. Thorac. Cardiovasc. Surg. 121:1161–1168, 2001.CrossRefGoogle Scholar
  22. 22.
    Liu, Y. T., K. Pekkan, S. C. Jones, and A. P. Yoganathan. The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary Connection. J. Biomech. Eng. 126:594–603, 2004.CrossRefGoogle Scholar
  23. 23.
    Long, C. C., M. Hsu, Y. Bazilevs, J. A. Feinstein, and A. L. Marsden. Fluid—structure interaction simulations of the Fontan procedure using variable wall properties. Int. J. Numer. Methods Biomed. Eng. 28:513–527, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mainwaring, R. D., J. J. Lamberti, K. Uzark, R. L. Spicer, M. W. Cocalis, and J. W. Moore. Effect of accessory pulmonary blood flow on survival after the bidirectional Glenn procedure. Circulation 100:II151–II156, 1999.CrossRefGoogle Scholar
  25. 25.
    McElhinney, D. B., S. M. Marianeschi, and V. M. Reddy. Additional pulmonary blood flow with the bidirectional Glenn anastomosis: does it make a difference? Ann. Thorac. Surg. 66:668–672, 1998.CrossRefGoogle Scholar
  26. 26.
    Migliavacca, F., M. R. de Leval, G. Dubini, and R. Pietrabissa. A computational pulsatile model of the bidirectional cavopulmonary anastomosis: the influence of pulmonary forward flow. J. Biomech. Eng. 118:520, 1996.CrossRefGoogle Scholar
  27. 27.
    Mirabella, L., C. M. Haggerty, T. Passerini, M. Piccinelli, A. J. Powell, P. J. Del Nido, A. Veneziani, and A. P. Yoganathan. Treatment planning for a TCPC test case: a numerical investigation under rigid and moving wall assumptions. Int J Numer Method Biomed Eng 29:197–216, 2013.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Orlando, W., R. Shandas, and C. Degroff. Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls. Work 1:220–227, 2006.Google Scholar
  29. 29.
    Pekkan, K., L. P. Dasi, D. de Zelicourt, K. S. Sundareswaran, M. A. Fogel, K. R. Kanter, and A. P. Yoganathan. Hemodynamic performance of stage-2 univentricular reconstruction: Glenn vs. Hemi-Fontan templates. Ann Biomed Eng 37:50–63, 2009.CrossRefGoogle Scholar
  30. 30.
    Pekkan, K., B. Whited, K. Kanter, S. Sharma, D. De Zelicourt, K. Sundareswaran, D. Frakes, J. Rossignac, and A. P. Yoganathan. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Medical Biol Eng Comput 46(11):1139–1152, 2008.CrossRefGoogle Scholar
  31. 31.
    Pennati, G., F. Migliavacca, G. Dubini, R. Pietrabissa, R. Fumero, and M. R. de Leval. Use of mathematical model to predict hemodynamics in cavopulmonary anastomosis with persistent forward flow. J. Surg. Res. 89:43–52, 2000.CrossRefGoogle Scholar
  32. 32.
    Pennati, G., D. Ph, F. Migliavacca, G. Dubini, R. Pietrabissa, R. Fumero, M. Sc, and Leval M. R. De. Use of mathematical model to predict hemodynamics in cavopulmonary anastomosis with persistent forward flow 1. J. Surg. Res. 52:43–52, 2000.CrossRefGoogle Scholar
  33. 33.
    Physiol, A. J., H. Circ, F. March, et al. Blood flow conditions in the proximal pulmonary arteries and vena cavae: healthy children during upright cycling exercise Blood flow conditions in the proximal pulmonary arteries and vena cavae: healthy children during upright cycling exercise. Am. J. Physiol. 2011.  https://doi.org/10.1152/ajpheart.00022.2004.Google Scholar
  34. 34.
    Qian, Y., J. L. Liu, K. Itatani, K. Miyaji, and M. Umezu. Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure. Ann. Biomed. Eng. 38:2302–2313, 2010.CrossRefGoogle Scholar
  35. 35.
    Qian, Y., J. F. L. Liu, and J. F. L. Liu. Hemodynamic simulation for surgical treatment of congenital heart disease. Annu Int Conf IEEE EMBS 2012:661–664, 2012.Google Scholar
  36. 36.
    Reddy, V. M., D. B. McElhinney, P. Moore, G. S. Haas, and F. L. Hanley. Outcomes after bidirectional cavopulmonary shunt in infants less than 6 months old. J. Am. Coll. Cardiol. 29:1365–1370, 1997.CrossRefGoogle Scholar
  37. 37.
    Seliem, M. A., J. Murphy, J. Vetter, S. Heyman, and W. Norwood. Lung perfusion patterns after bidirectional cavopulmonary anastomosis (Hemi-Fontan procedure). Pediatr. Cardiol. 18:191–196, 1997.CrossRefGoogle Scholar
  38. 38.
    Si, B., Z.-S. Luan, T.-J. Wang, Y.-S. Ning, N. Li, M. Zhu, Z.-M. Liu, G.-H. Ding, and B. Qiao. Distribution of lung blood on modified bilateral Glenn shunt evaluated by Tc-99 m-MAA lung perfusion scintigraphy: a retrospective study. Medicine (Baltimore) 95:e4920, 2016.CrossRefGoogle Scholar
  39. 39.
    Sun, Q., D. Wan, J. Liu, Y. Liu, M. Zhu, H. Hong, Y. Sun, and Q. Wang. Influence of antegrade pulmonary blood flow on the hemodynamic performance of bidirectional cavopulmonary anastomosis: a numerical study. Med. Eng. Phys. 31:227–233, 2009.CrossRefGoogle Scholar
  40. 40.
    Webber, S. A., P. Horvath, J. G. LeBlanc, et al. Influence of competitive pulmonary blood flow on the bidirectional superior cavopulmonary shunt : a multi-institutional study. Circulation 92:279–286, 1995.CrossRefGoogle Scholar
  41. 41.
    Wei, Z., Z. Charlie Zheng, and X. Yang. Computation of flow through a three-dimensional periodic array of porous structures by a parallel immersed-boundary method. J. Fluids Eng. 136:40905, 2014.CrossRefGoogle Scholar
  42. 42.
    Wei, Z., P. M. Trusty, M. Tree, C. M. Haggerty, E. Tang, M. Fogel, and A. P. Yoganathan. Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning? J. Biomech. 50:172–179, 2016.CrossRefGoogle Scholar
  43. 43.
    Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116:I165–I171, 2007.CrossRefGoogle Scholar
  44. 44.
    Xu, Y., Y. Liu, X. Lü, Y. Li, and C. Yu. Bilateral bidirectional superior cavopulmonary shunt is more beneficial in medium and long term clinical outcomes than unilateral shunt. Chin. Med. J. (Engl) 122:129–135, 2009.Google Scholar
  45. 45.
    Yamada, K., X. Roques, N. Elia, M. N. Laborde, M. Jimenez, A. Choussat, and E. Baudet. The short- and mid-term results of bidirectional cavopulmonary shunt with additional source of pulmonary blood flow as definitive palliation for the functional single ventricular heart. unfiled. Eur. J. Cardiothorac. Surg. 18:683–689, 2000.CrossRefGoogle Scholar
  46. 46.
    Yoshida, M., M. Yamaguchi, N. Yoshimura, H. Murakami, H. Matsuhisa, and Y. Okita. Appropriate additional pulmonary blood flow at the bidirectional Glenn procedure is useful for completion of total cavopulmonary connection. Ann. Thorac. Surg. 80:976–981, 2005.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Biao Si
    • 1
    • 2
    • 3
  • Bin Qiao
    • 2
    • 3
  • Guang Yang
    • 4
  • Meng Zhu
    • 2
  • Fengyu Zhao
    • 2
  • Tongjian Wang
    • 2
  • Na Li
    • 2
  • Xiaopeng Ji
    • 5
  • Guanghong Ding
    • 1
  1. 1.Department of Mechanics and Engineering ScienceFudan UniversityShanghaiChina
  2. 2.Institute of Cardiovascular DiseaseGeneral Hospital of Jinan Military RegionJinanChina
  3. 3.Institute of Computational Science and Cardiovascular DiseaseNanjing Medical UniversityNanjingChina
  4. 4.Wuxi Mingci Cardiovascular HospitalWuxiChina
  5. 5.Shandong Medical Imaging Research InstituteShandong UniversityJinanChina

Personalised recommendations