Advertisement

Cardiovascular Engineering and Technology

, Volume 9, Issue 4, pp 641–653 | Cite as

Steady Flow in a Patient-Averaged Inferior Vena Cava—Part I: Particle Image Velocimetry Measurements at Rest and Exercise Conditions

  • Maureen B. Gallagher
  • Kenneth I. Aycock
  • Brent A. Craven
  • Keefe B. Manning
Article
  • 47 Downloads

Abstract

Purpose

Although many previous computational fluid dynamics (CFD) studies have investigated the hemodynamics in the inferior vena cava (IVC), few studies have compared computational predictions to experimental data, and only qualitative comparisons have been made. Herein, we provide particle image velocimetry (PIV) measurements of flow in a patient-averaged IVC geometry under idealized conditions typical of those used in the preclinical evaluation of IVC filters.

Methods

Measurements are acquired under rest and exercise flow rate conditions in an optically transparent model fabricated using 3D printing. To ensure that boundary conditions are well-defined and to make follow-on CFD validation studies more convenient, fully-developed flow is provided at the inlets (i.e., the iliac veins) by extending them with straight rigid tubing longer than the estimated entrance lengths. Velocity measurements are then obtained at the downstream end of the tubing to confirm Poiseuille inflow boundary conditions.

Results

Measurements in the infrarenal IVC reveal that flow profiles are blunter in the sagittal plane (minor axis) than in the coronal plane (major axis). Peak in-plane velocity magnitudes are 4.9 cm/s and 27 cm/s under the rest and exercise conditions, respectively. Flow profiles are less parabolic and exhibit more inflection points at the higher flow rate. Bimodal velocity peaks are also observed in the sagittal plane at the elevated flow condition.

Conclusions

The IVC geometry, boundary conditions, and infrarenal velocity measurements are provided for download on a free and publicly accessible repository at  https://doi.org/10.6084/m9.figshare.7198703. These data will facilitate future CFD validation studies of idealized, in vitro IVC hemodynamics and of similar laminar flows in vascular geometries.

Keywords

Inferior vena cava Hemodynamics Particle image velocimetry Verification and validation 

Notes

Acknowledgments

We thank Prasanna Hariharan for reviewing the manuscript and for helpful discussions. This study was supported by the FDA Critical Path Initiative (HHSF223201610405P) and the Penn State College of Engineering Instrumentation Grant. The findings and conclusions in this article have not been formally disseminated by the U.S. FDA and should not be construed to represent any agency determination or policy. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    ASME V&V 40 Committee. Draft V&V 40—Standard for Verification and Validation in Computational Methods for Medical Devices. New York: American Society of Mechanical Engineers, 2018.Google Scholar
  2. 2.
    Aycock, K. I., R. L. Campbell, F. C. Lynch, K. B. Manning, and B. A. Craven. The importance of hemorheology and patient anatomy on the hemodynamics in the inferior vena cava. Ann. Biomed. Eng. 44(12):3568–3582, 2016.CrossRefGoogle Scholar
  3. 3.
    Aycock, K. I., R. L. Campbell, F. C. Lynch, K. B. Manning, and B. A. Craven. Computational predictions of the embolus-trapping performance of an IVC filter in patient-specific and idealized IVC geometries. Biomech. Model. Mechanobiol. 16(6):1957–1969, 2017.CrossRefGoogle Scholar
  4. 4.
    Aycock, K. I., R. L. Campbell, K. B. Manning, and B. A. Craven. A resolved two-way coupled CFD/6-DOF approach for predicting embolus transport and the embolus-trapping efficiency of IVC filters. Biomech. Model. Mechanobiol. 16(3):851–869, 2017.CrossRefGoogle Scholar
  5. 5.
    Aycock, K. I., R. L. Campbell, K. B. Manning, S. P. Sastry, S. M. Shontz, F. C. Lynch, and B. A. Craven. A computational method for predicting inferior vena cava filter performance on a patient-specific basis. J. Biomech. Eng. 136(8):081003, 2014.CrossRefGoogle Scholar
  6. 6.
    Aycock, K. I., P. Hariharan, and B. A. Craven. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing. Exp. Fluids 58(11):154, 2017.CrossRefGoogle Scholar
  7. 7.
    Berg, P., D. Stucht, G. Janiga, O. Beuing, O. Speck, and D. Thévenin. Cerebral blood flow in a healthy circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J. Biomech. Eng. 136(4):041003, 2014.CrossRefGoogle Scholar
  8. 8.
    Bos, A., T. Van Ha, D. van Beek, M. Ginsburg, S. Zangan, R. Navuluri, J. Lorenz, and B. Funaki. Strut penetration: local complications, breakthrough pulmonary embolism, and retrieval failure in patients with Celect vena cava filters. J. Vasc. Interv. Radiol. 26(1):101–106, 2015.CrossRefGoogle Scholar
  9. 9.
    Butscher, D., C. Hutter, S. Kuhn, and P. Rudolf von Rohr. Particle image velocimetry in a foam-like porous structure using refractive index matching: a method to characterize the hydrodynamic performance of porous structures. Exp. Fluids 53:1123–1132, 2012.CrossRefGoogle Scholar
  10. 10.
    Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am. J. Neuroradiol. 26(10):2550–2559, 2005.Google Scholar
  11. 11.
    Chen, Y., X. Deng, X. Shan, and Y. Xing. Study of helical flow inducers with different thread pitches and diameters in vena cava. PLoS ONE 13(1):e0190609, 2018.CrossRefGoogle Scholar
  12. 12.
    Chen, Y., P. Zhang, X. Deng, Y. Fan, Y. Xing, and N. Xing. Improvement of hemodynamic performance using novel helical flow vena cava filter design. Sci. Rep. 7:40724, 2017.CrossRefGoogle Scholar
  13. 13.
    Cheng, C. P., R. J. Herfkens, and C. A. Taylor. Inferior vena caval hemodynamics quantified in vivo at rest and during cycling exercise using magnetic resonance imaging. Am. J. Physiol. Heart Circ. Physiol. 284(4):H1161–H1167, 2003.CrossRefGoogle Scholar
  14. 14.
    Ciozda, W., I. Kedan, R. Khandwalla, R. Zimmer, and A. Kimchi. The efficacy of sonographic measurement of inferior vena cava diameter as an estimate of central venous pressure. Cardiology 134:156, 2016.Google Scholar
  15. 15.
    Craven, A., K. I. Aycock, M. Z. Gallagher, and K. B. Manning. Steady flow in a patient-averaged inferior vena cava - Part II: Computational Fluid Dynamics Verification and Validation. Cardiovasc. Eng. Technol. In press, 2018.Google Scholar
  16. 16.
    Ha, H., M. Ziegler, M. Welander, N. Bjarnegård, C.-J. Carlhäll, M. Lindenberger, T. Länne, T. Ebbers, and P. Dyverfeldt. Age-related vascular changes affect turbulence in aortic blood flow. Front. Physiol. 9:36, 2018.CrossRefGoogle Scholar
  17. 17.
    Hariharan, P., M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, S. F. Stewart, M. R. Myers, M. R. Berman, G. W. Burgreen, et al. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. J. Biomech. Eng. 133(4):041002, 2011.CrossRefGoogle Scholar
  18. 18.
    Hostetter, T. H. Human renal response to meat meal. Am. J. Physiol. 250(4):F613–F618, 1986.Google Scholar
  19. 19.
    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3):90–95, 2007.CrossRefGoogle Scholar
  20. 20.
    Jaeger, H. J., S. Kolb, T. Mair, M. Geller, A. Christmann, R. K. Kinne, K. D. Mathias, et al. In vitro model for the evaluation of inferior vena cava filters: effect of experimental parameters on thrombus-capturing efficacy of the VenaTech-LGM filter. J. Vasc. Interv. Radiol. 9(2):295–304, 1998.CrossRefGoogle Scholar
  21. 21.
    Kalantarinia, K., J. T. Belcik, J. T. Patrie, and K. Wei. Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound. Am. J. Physiol. 297:F1129–F1134, 2009.Google Scholar
  22. 22.
    Korakianitis, T., and Y. Shi. Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomech. 39(11):1964–1982, 2006.CrossRefGoogle Scholar
  23. 23.
    Laborda, A., W. T. Kuo, I. Ioakeim, I. De Blas, M. Malvè, C. Lahuerta, and M. A. De Gregorio. Respiratory-induced haemodynamic changes: a contributing factor to IVC filter penetration. Cardiovasc. Intervent. Radiol. 38(5):1192–1197, 2015.CrossRefGoogle Scholar
  24. 24.
    Laborda, A., S. Sierre, M. Malvè, I. De Blas, I. Ioakeim, W. T. Kuo, and M. A. De Gregorio. Influence of breathing movements and valsalva maneuver on vena caval dynamics. World J. Radiol. 6(10):833, 2014.CrossRefGoogle Scholar
  25. 25.
    Malinauskas, R. A., P. Hariharan, S. W. Day, L. H. Herbertson, M. Buesen, U. Steinseifer, K. I. Aycock, B. C. Good, S. Deutsch, K. B. Manning, et al. FDA benchmark medical device flow models for CFD validation. ASAIO J. 63(2):150–160, 2017.CrossRefGoogle Scholar
  26. 26.
    Mandelbaum, A., and E. Ritz. Vena cava diameter measurement for estimation of dry weight in haemodialysis patients. Nephrol. Dial. Transplant. 11(2):24–27, 1996.CrossRefGoogle Scholar
  27. 27.
    Marsden, A. L., A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel y-shaped extracardiac Fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137(2):394–403, 2009.CrossRefGoogle Scholar
  28. 28.
    Migliavacca, F., P. J. Kilner, G. Pennati, G. Dubini, R. Pietrabissa, R. Fumero, and M. R. de Leval. Computational fluid dynamic and magnetic resonance analyses of flow distribution between the lungs after total cavopulmonary connection. IEEE Trans. Biomed. Eng. 46(4):393–399, 1999.CrossRefGoogle Scholar
  29. 29.
    Mismetti, P., S. Laporte, O. Pellerin, P.-V. Ennezat, F. Couturaud, A. Elias, N. Falvo, N. Meneveau, I. Quere, P.-M. Roy, et al. Effect of a retrievable inferior vena cava filter plus anticoagulation vs anticoagulation alone on risk of recurrent pulmonary embolism: a randomized clinical trial. JAMA 313(16):1627–1635, 2015.CrossRefGoogle Scholar
  30. 30.
    Moreno, F. L., A. D. Hagan, J. R. Holmen, T. A. Pryor, R. D. Strickland, and C. H. Castle. Evaluation of size and dynamics of the inferior vena cava as an index of right-sided cardiac function. Am. J. Cardiol. 53(4):579–585, 1984.CrossRefGoogle Scholar
  31. 31.
    Murphy, E. H., E. D. Johnson, and F. R. Arko. Evaluation of wall motion and dynamic geometry of the inferior vena cava using intravascular ultrasound: implications for future device design. J. Endovasc. Ther. 15(3):349–355, 2008.CrossRefGoogle Scholar
  32. 32.
    Najjari, M. R., J. A. Hinke, K. V. Bulusu, and M. W. Plesniak. On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Exp. Fluids 57(6):96, 2016.CrossRefGoogle Scholar
  33. 33.
    Nicolas, M., M. Malve, E. Peña, M. Martínez, and R. Leask. In vitro comparison of Günther Tulip and Celect filters: Testing filtering efficiency and pressure drop. J. Biomech. 48(3):504–511, 2015.CrossRefGoogle Scholar
  34. 34.
    Nicolás, M., V. Palero, E. Pena, M. Arroyo, M. Martínez, and M. Malvè. Numerical and experimental study of the fluid flow through a medical device. Int. Commun. Heat Mass Transfer 61:170–178, 2015.CrossRefGoogle Scholar
  35. 35.
    Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. 9(3):10–20, 2007.CrossRefGoogle Scholar
  36. 36.
    Pekkan, K., B. Whited, K. Kanter, S. Sharma, D. De Zelicourt, K. Sundareswaran, D. Frakes, J. Rossignac, and A. P. Yoganathan. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Med. Biol. Eng. Compu. 46(11):1139–1152, 2008.CrossRefGoogle Scholar
  37. 37.
    PREPIC Study Group. Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism: the PREPIC (Prevention du Risque d’Embolie Pulmonaire par Interruption Cave) randomized study. Circulation 112(3):416–422, 2005.CrossRefGoogle Scholar
  38. 38.
    Qian, Y., J. Liu, K. Itatani, K. Miyaji, and M. Umezu. Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure. Ann. Biomed. Eng. 38(7):2302–2313, 2010.CrossRefGoogle Scholar
  39. 39.
    Rahbar, E., D. Mori, and J. E. Moore, Jr. Three-dimensional analysis of flow disturbances caused by clots in inferior vena cava filters. J. Vasc. Interv. Radiol. 22(6):835–842, 2011.CrossRefGoogle Scholar
  40. 40.
    Ren, Z., S. L. Wang, and M. A. Singer. Modeling hemodynamics in an unoccluded and partially occluded inferior vena cava under rest and exercise conditions. Med. Biol. Eng. Comput. 50(3):277–287, 2012.CrossRefGoogle Scholar
  41. 41.
    Roach, M. R., S. Scott, and G. G. Ferguson. The hemodynamic importance of the geometry of bifurcations in the circle of Willis (glass model studies). Stroke 3(3):255–267, 1972.CrossRefGoogle Scholar
  42. 42.
    Robinson, R. A., L. H. Herbertson, S. S. Das, R. A. Malinauskas, W. F. Pritchard, and L. W. Grossman. Limitations of using synthetic blood clots for measuring in vitro clot capture efficiency of inferior vena cava filters. Med. Devices (Auckl.) 6:49, 2013.Google Scholar
  43. 43.
    Roy, C. J., and W. L. Oberkampf. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput. Methods Appl. Mech. Eng. 200:2131–2144, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Singer, M. A., W. D. Henshaw, and S. L. Wang. Computational modeling of blood flow in the Trapease inferior vena cava filter. J. Vasc. Interv. Radiol. 20(6):799–805, 2009.CrossRefGoogle Scholar
  45. 45.
    Singer, M. A., and S. L. Wang. Modeling blood flow in a tilted inferior vena cava filter: does tilt adversely affect hemodynamics? J. Vasc. Interv. Radiol. 22(2):229–235, 2011.CrossRefGoogle Scholar
  46. 46.
    Singer, M. A., S. L. Wang, and D. P. Diachin. Design optimization of vena cava filters: an application to dual filtration devices. J. Biomech. Eng. 132(10):101006, 2010.CrossRefGoogle Scholar
  47. 47.
    Song, M. S., H. Y. Choi, J. H. Seong, and E. S. Kim. Matching-index-of-refraction of transparent 3D printing models for flow visualization. Nucl. Eng. Des. 284:185–191, 2015.CrossRefGoogle Scholar
  48. 48.
    Stehbens, W. Turbulence of blood flow. Q. J. Exp. Physiol. Cognate Med. Sci. Transl. Integr. 44(1):110–117, 1959.CrossRefGoogle Scholar
  49. 49.
    Steinman, D. A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30(4):483–497, 2002.CrossRefGoogle Scholar
  50. 50.
    Stewart, S. F., E. G. Paterson, G. W. Burgreen, P. Hariharan, M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, M. R. Berman, et al. Assessment of CFD performance in simulations of an idealized medical device: results of FDAs first computational interlaboratory study. Cardiovasc. Eng. Technol. 3(2):139–160, 2012.CrossRefGoogle Scholar
  51. 51.
    Stewart, S. F., R. A. Robinson, R. A. Nelson, and R. A. Malinauskas. Effects of thrombosed vena cava filters on blood flow: flow visualization and numerical modeling. Ann. Biomed. Eng. 36(11):1764, 2008.CrossRefGoogle Scholar
  52. 52.
    Sundareswaran, K. S., D. de Zélicourt, S. Sharma, K. R. Kanter, T. L. Spray, J. Rossignac, F. Sotiropoulos, M. A. Fogel, and A. P. Yoganathan. Correction of pulmonary arteriovenous malformation using image-based surgical planning. JACC Cardiovasc. Imaging 2(8):1024–1030, 2009.CrossRefGoogle Scholar
  53. 53.
    Swaminathan, T., H. H. Hu, and A. A. Patel. Numerical analysis of the hemodynamics and embolus capture of a greenfield vena cava filter. J. Biomech. Eng. 128(3):360–370, 2006.CrossRefGoogle Scholar
  54. 54.
    Taylor, J. O., B. C. Good, A. V. Paterno, P. Hariharan, S. Deutsch, R. A. Malinauskas, and K. B. Manning. Analysis of transitional and turbulent flow through the FDA benchmark nozzle model using laser Doppler velocimetry. Cardiovasc. Eng. Technol. 7(3):191–209, 2016.CrossRefGoogle Scholar
  55. 55.
    Tedaldi, E., C. Montanari, K. I. Aycock, F. Sturla, A. Redaelli, and K. B. Manning. An experimental and computational study of the inferior vena cava hemodynamics under respiratory-induced collapse of the infrarenal IVC. Med. Eng. Phys. 54:44–55, 2018.CrossRefGoogle Scholar
  56. 56.
    Tsui, B., T. An, E. Moon, R. King, and W. Wang. Retrospective review of 516 implantations of option inferior vena cava filters at a single health care system. J. Vasc. Interv. Radiol. 27(3):345–353, 2016.CrossRefGoogle Scholar
  57. 57.
    US Food and Drug Administration. Reporting of Computational Modeling Studies in Medical Device Submissions. Rockville, MD: US Food and Drug Administration, 2016.Google Scholar
  58. 58.
    Van der Walt, S., S. C. Colbert, and G. Varoquaux. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2):22–30, 2011.CrossRefGoogle Scholar
  59. 59.
    Wang, S. L., A. Siddiqui, and E. Rosenthal. Long-term complications of inferior vena cava filters. J. Vasc. Surg. Venous Lymphat. Disord. 5(1):33–41, 2017.CrossRefGoogle Scholar
  60. 60.
    Wang, S. L., and M. A. Singer. Toward an optimal position for inferior vena cava filters: computational modeling of the impact of renal vein inflow with Celect and TrapEase filters. J. Vasc. Interv. Radiol. 21(3):367–374, 2010.CrossRefGoogle Scholar
  61. 61.
    Yazdi, S. G., P. H. Geoghegan, P. D. Docherty, M. Jermy, and A. Khanafer. A review of arterial phantom fabrication methods for flow measurement using PIV techniques. Ann. Biomed. Eng. 2018.  https://doi.org/10.1007/s10439-018-2085-8.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringPennsylvania State UniversityUniversity ParkUSA
  2. 2.Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological HealthUnited States Food and Drug AdministrationSilver SpringUSA
  3. 3.Department of SurgeryPenn State Hershey Medical CenterHersheyUSA

Personalised recommendations