Advertisement

Cardiovascular Engineering and Technology

, Volume 9, Issue 4, pp 707–722 | Cite as

Evaluation of Peak Wall Stress in an Ascending Thoracic Aortic Aneurysm Using FSI Simulations: Effects of Aortic Stiffness and Peripheral Resistance

  • Rossella Campobasso
  • Francesca Condemi
  • Magalie Viallon
  • Pierre Croisille
  • Salvatore Campisi
  • Stéphane Avril
Article
  • 134 Downloads

Abstract

Purpose

It has been reported clinically that rupture or dissections in thoracic aortic aneurysms (TAA) often occur due to hypertension which may be modelled with sudden increase of peripheral resistance, inducing acute changes of blood volumes in the aorta. There is clinical evidence that more compliant aneurysms are less prone to rupture as they can sustain such changes of volume. The aim of the current paper is to verify this paradigm by evaluating computationally the role played by the variation of peripheral resistance and the impact of aortic stiffness onto peak wall stress in ascending TAA.

Methods

Fluid–structure interaction (FSI) analyses were performed using patient-specific geometries and boundary conditions derived from 4D MRI datasets acquired on a patient. Blood was assumed incompressible and was treated as a non-Newtonian fluid using the Carreau model while the wall mechanical properties were obtained from the bulge inflation tests carried out in vitro after surgical repair. The Navier–Stokes equations were solved in ANSYS Fluent. The Arbitrary Lagrangian–Eulerian formulation was used to account for the wall deformations. At the interface between the solid domain and the fluid domain, the fluid pressure was transferred to the wall and the displacement of the wall was transferred to the fluid. The two systems were connected by the System Coupling component which controls the solver execution of fluid and solid simulations in ANSYS. Fluid and solid domains were solved sequentially starting from the fluid simulations.

Results

Distributions of blood flow, wall shear stress and wall stress were evaluated in the ascending thoracic aorta using the FSI analyses. We always observed a significant flow eccentricity in the simulations, in very good agreement with velocity profiles measured using 4D MRI. The results also showed significant increase of peak wall stress due to the increase of peripheral resistance and aortic stiffness. In the worst case scenario, the largest peripheral resistance (1010 kg s m−4) and stiffness (10 MPa) resulted in a maximal principal stress equal to 702 kPa, whereas it was only 77 kPa in normal conditions.

Conclusions

This is the first time that the risk of rupture of an aTAA is quantified in case of the combined effects of hypertension and aortic stiffness increase. Our findings suggest that a stiffer TAA may have the most altered distribution of wall stress and an acute change of peripheral vascular resistance could significantly increase the risk of rupture for a stiffer aneurysm.

Keywords

4D MRI Thoracic aortic aneurysm Fluid–structure interactions Peak wall stress Risk of rupture Aortic stiffness 

Notes

Acknowledgments

We thank Dr Morbiducci and Dr Gallo from Polytechnic of Turin (Italy) who provided insight and expertise that greatly assisted the model development. We are also grateful to Ansys, Inc. for providing Ansys-Fluent (ANSYS® Academic Research, Release 17.2). This research was supported by the European Research Council (ERC grant biolochanics, grant number 647067).

Funding

This research was supported by the European Research Council (ERC grant biolochanics, grant number 647067, grant holder: SA).

Conflict of interest

All the authors declare they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the 1964 Helsinki declaration and its later amendments. The study was approved by the Institutional Review Board of the University Hospital Center of Saint-Étienne (France). After informed consent, a 59-year-old man was enrolled. The patient was scanned on a 3T MRI scanner (Siemens Magnetom Prisma) without contrast agent using a 4D flow phase contrast protocol and sequence.

References

  1. 1.
    Alford, P. W., and L. A. Taber. Computational study of growth and remodelling in the aortic arch. Comput. Methods Biomech. Biomed. Eng. 11(5):525–538, 2008.  https://doi.org/10.1080/10255840801930710.Google Scholar
  2. 2.
    ANSYS® Academic Research, Release 17.2, Help System, Overview of Flow Solvers Theory Guide, ANSYS, Inc.Google Scholar
  3. 3.
    Azadani, A. N., S. Chitsaz, A. Mannion, A. Mookhoek, A. Wisneski, J. M. Guccione, et al. Biomechanical properties of human ascending thoracic aortic aneurysms. Ann. Thorac. Surg. 96(1):50–58, 2013.  https://doi.org/10.1016/j.athoracsur.2013.03.094.Google Scholar
  4. 4.
    Burk, J., P. Blanke, Z. Stankovic, A. Barker, M. Russe, J. Geiger, et al. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J. Cardiovasc. Magn. Reson. 14:84, 2012.  https://doi.org/10.1186/1532-429X-14-84.Google Scholar
  5. 5.
    Callaghan, F. M., J. Karkouri, K. Broadhouse, M. Evin, D. F. Fletcher, and S. M. Grieve. Thoracic aortic aneurysm: 4D flow MRI and computational fluid dynamics model. Comput. Methods Biomech. Biomed. Eng. 18(Suppl 1):1894–1895, 2015.  https://doi.org/10.1080/10255842.2015.1069559.Google Scholar
  6. 6.
    Chau, K. H., and J. A. Elefteriades. Natural history of thoracic aortic aneurysms: size matters, plus moving beyond size. Prog. Cardiovasc. Dis. 56(1):74–80, 2013.  https://doi.org/10.1016/j.pcad.2013.05.007.Google Scholar
  7. 7.
    Cheng, Z., E. Kidher, O. A. Jarral, D. P. O’Regan, N. B. Wood, T. Athanasiou, et al. Assessment of hemodynamic conditions in the aorta following root replacement with composite valve-conduit graft. Ann. Biomed. Eng. 44(5):1392–1404, 2016.  https://doi.org/10.1007/s10439-015-1453-x.Google Scholar
  8. 8.
    Childs, H., L. Ma, M. Ma, J. Clarke, M. Cocker, J. Green, et al. Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex vivo validation. J. Cardiovasc. Magn. Reson. 13:40, 2011.  https://doi.org/10.1186/1532-429X-13-40.Google Scholar
  9. 9.
    Choudhury, N., O. Bouchot, L. Rouleau, D. Tremblay, R. Cartier, J. Butany, et al. Local mechanical and structural properties of healthy and diseased human ascending aorta tissue. Cardiovasc. Pathol. 18(2):83–91, 2009.  https://doi.org/10.1016/j.carpath.2008.01.001.Google Scholar
  10. 10.
    Condemi, F., S. Campisi, M. Viallon, T. Troalen, G. Xuexin, A. J. Barker, et al. Fluid- and Biomechanical Analysis of Ascending Thoracic Aorta Aneurysm with Concomitant Aortic Insufficiency. Ann. Biomed. Eng. 45(12):2921–2932, 2017.  https://doi.org/10.1007/s10439-017-1913-6.Google Scholar
  11. 11.
    Crosetto, P., P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, and A. Quarteroni. Fluid–structure interaction simulation of aortic blood flow. Comput. Fluids 43(1):46–57, 2011.  https://doi.org/10.1016/j.compfluid.2010.11.032.MathSciNetzbMATHGoogle Scholar
  12. 12.
    Davis, F. M., Y. Luo, S. Avril, A. Duprey, and J. Lu. Local mechanical properties of human ascending thoracic aneurysms. J. Mech. Behav. Biomed. Mater. 61:235–249, 2016.  https://doi.org/10.1016/j.jmbbm.2016.03.025.Google Scholar
  13. 13.
    Duprey, A., O. Trabelsi, M. Vola, J. P. Favre, and S. Avril. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater. 42:273–285, 2016.  https://doi.org/10.1016/j.actbio.2016.06.028.Google Scholar
  14. 14.
    Gallo, D., G. De Santis, F. Negri, D. Tresoldi, R. Ponzini, D. Massai, et al. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow. Ann. Biomed. Eng. 40(3):729–741, 2012.  https://doi.org/10.1007/s10439-011-0431-1.Google Scholar
  15. 15.
    Garcia-Herrera, C. M., J. M. Atienza, F. J. Rojo, E. Claes, G. V. Guinea, D. J. Celentano, et al. Mechanical behaviour and rupture of normal and pathological human ascending aortic wall. Med. Biol. Eng. Comput. 50(6):559–566, 2012.  https://doi.org/10.1007/s11517-012-0876-x.Google Scholar
  16. 16.
    Hatzaras, I., M. Tranquilli, M. Coady, P. M. Barrett, J. Bible, and J. A. Elefteriades. Weight lifting and aortic dissection: more evidence for a connection. Cardiology 107(2):103–106, 2007.  https://doi.org/10.1159/000094530.Google Scholar
  17. 17.
    Hornick, M., R. Moomiaie, H. Mojibian, B. Ziganshin, Z. Almuwaqqat, E. S. Lee, et al. ‘Bovine’ aortic arch—a marker for thoracic aortic disease. Cardiology 123(2):116–124, 2012.  https://doi.org/10.1159/000342071.Google Scholar
  18. 18.
    Howard, D. P., A. Banerjee, J. F. Fairhead, J. Perkins, L. E. Silver, P. M. Rothwell, et al. Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the Oxford Vascular Study. Circulation 127(20):2031–2037, 2013.  https://doi.org/10.1161/CIRCULATIONAHA.112.000483.Google Scholar
  19. 19.
    Humphrey, J. D., M. A. Schwartz, G. Tellides, and D. M. Milewicz. Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ. Res. 116(8):1448–1461, 2015.  https://doi.org/10.1161/CIRCRESAHA.114.304936.Google Scholar
  20. 20.
    Iliopoulos, D. C., R. P. Deveja, E. P. Kritharis, D. Perrea, G. D. Sionis, K. Toutouzas, et al. Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysms. Med. Eng. Phys. 31(1):1–9, 2009.  https://doi.org/10.1016/j.medengphy.2008.03.002.Google Scholar
  21. 21.
    Iliopoulos, D. C., E. P. Kritharis, A. T. Giagini, S. A. Papadodima, and D. P. Sokolis. Ascending thoracic aortic aneurysms are associated with compositional remodeling and vessel stiffening but not weakening in age-matched subjects. J. Thorac. Cardiovasc. Surg. 137(1):101–109, 2009.  https://doi.org/10.1016/j.jtcvs.2008.07.023.Google Scholar
  22. 22.
    Isselbacher, E. M. Thoracic and abdominal aortic aneurysms. Circulation 111(6):816–828, 2005.  https://doi.org/10.1161/01.CIR.0000154569.08857.7A.Google Scholar
  23. 23.
    Joldes, G. R., K. Miller, A. Wittek, and B. Doyle. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. J. Mech. Behav. Biomed. Mater. 58:139–148, 2016.  https://doi.org/10.1016/j.jmbbm.2015.07.029.Google Scholar
  24. 24.
    Jondeau, G., and C. Boileau. Genetics of thoracic aortic aneurysms. Curr. Atheroscler. Rep. 14(3):219–226, 2012.  https://doi.org/10.1007/s11883-012-0241-4.Google Scholar
  25. 25.
    Khanafer, K., and R. Berguer. Fluid–structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection. J. Biomech. 42(16):2642–2648, 2009.  https://doi.org/10.1016/j.jbiomech.2009.08.010.Google Scholar
  26. 26.
    Khanafer, K., A. Duprey, M. Zainal, M. Schlicht, D. Williams, and R. Berguer. Determination of the elastic modulus of ascending thoracic aortic aneurysm at different ranges of pressure using uniaxial tensile testing. J. Thorac. Cardiovasc. Surg. 142(3):682–686, 2011.  https://doi.org/10.1016/j.jtcvs.2010.09.068.Google Scholar
  27. 27.
    Lantz, J., J. Renner, and M. Karlsson. Wall shear stress in a subject specific human aorta—influence of fluid–structure interction. Int. J. Appl. Mech. 03(04):759–778, 2011.  https://doi.org/10.1142/s1758825111001226.Google Scholar
  28. 28.
    Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, et al. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38(4):1288–1313, 2010.  https://doi.org/10.1007/s10439-010-9949-x.Google Scholar
  29. 29.
    Leung, J. H., A. R. Wright, N. Cheshire, J. Crane, S. A. Thom, A. D. Hughes, et al. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. BioMed. Eng. Online 5(1):33, 2006.  https://doi.org/10.1186/1475-925X-5-33.Google Scholar
  30. 30.
    Martin, C., W. Sun, T. Pham, and J. Elefteriades. Predictive biomechanical analysis of ascending aortic aneurysm rupture potential. Acta Biomater. 9(12):9392–9400, 2013.  https://doi.org/10.1016/j.actbio.2013.07.044.Google Scholar
  31. 31.
    Martufi, G., T. C. Gasser, J. J. Appoo, and E. S. Di Martino. Mechano-biology in the thoracic aortic aneurysm: a review and case study. Biomech. Model. Mechanobiol. 13(5):917–928, 2014.  https://doi.org/10.1007/s10237-014-0557-9.Google Scholar
  32. 32.
    Michel, J. B., G. Jondeau, and D. M. Milewicz. From genetics to response to injury: vascular smooth muscle cells in aneurysms and dissections of the ascending aorta. Cardiovasc. Res. 114(4):578–589, 2018.  https://doi.org/10.1093/cvr/cvy006.Google Scholar
  33. 33.
    Morbiducci, U., D. Gallo, D. Massai, F. Consolo, R. Ponzini, L. Antiga, et al. Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow. J. Biomech. Eng. 132(9):091005, 2010.  https://doi.org/10.1115/1.4001886.Google Scholar
  34. 34.
    Mousavi, S. J., and S. Avril. Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory. Biomech. Model. Mechanobiol. 16(5):1765–1777, 2017.  https://doi.org/10.1007/s10237-017-0918-2.Google Scholar
  35. 35.
    Mousavi, S. J., S. Farzaneh, and S. Avril. Computational predictions of damage propagation preceding dissection of ascending thoracic aortic aneurysms. Int. J. Numer. Methods biomed. Eng. 34(4):e2944, 2018.  https://doi.org/10.1002/cnm.2944.MathSciNetGoogle Scholar
  36. 36.
    Nathan, D. P., C. Xu, J. H. Gorman, 3rd, R. M. Fairman, J. E. Bavaria, R. C. Gorman, et al. Pathogenesis of acute aortic dissection: a finite element stress analysis. Ann. Thorac. Surg. 91(2):458–463, 2011.  https://doi.org/10.1016/j.athoracsur.2010.10.042.Google Scholar
  37. 37.
    Nordon, I., R. Brar, J. Taylor, R. Hinchliffe, I. M. Loftus, and M. M. Thompson. Evidence from cross-sectional imaging indicates abdominal but not thoracic aortic aneurysms are local manifestations of a systemic dilating diathesis. J. Vasc. Surg. 50(1):171e1–176e1, 2009.  https://doi.org/10.1016/j.jvs.2009.03.007.Google Scholar
  38. 38.
    Pasta, S., A. Rinaudo, A. Luca, M. Pilato, C. Scardulla, T. G. Gleason, et al. Difference in hemodynamic and wall stress of ascending thoracic aortic aneurysms with bicuspid and tricuspid aortic valve. J. Biomech. 46(10):1729–1738, 2013.  https://doi.org/10.1016/j.jbiomech.2013.03.029.Google Scholar
  39. 39.
    Phillippi, J. A., S. Pasta, and D. A. Vorp. Biomechanics and Pathobiology of Aortic Aneurysms. Biomechanics and Mechanobiology of Aneurysms. Studies in Mechanobiology: Tissue Engineering and Biomaterials, pp. 67–118, 2011.Google Scholar
  40. 40.
    Pirola, S., Z. Cheng, O. A. Jarral, D. P. O’Regan, J. R. Pepper, T. Athanasiou, et al. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics. J. Biomech. 60:15–21, 2017.  https://doi.org/10.1016/j.jbiomech.2017.06.005.Google Scholar
  41. 41.
    Qiao, A.-K., W.-Y. Fu, and Y.-J. Liu. Study on hemodynamics in patient-specific thoracic aortic aneurysm. Theoret. Appl. Mech. Lett. 1(1):014001, 2011.  https://doi.org/10.1063/2.1101401.Google Scholar
  42. 42.
    Ramanath, V. S., J. K. Oh, T. M. Sundt, III, and K. A. Eagle. Acute aortic syndromes and thoracic aortic aneurysm. Mayo Clin. Proc. 84(5):465–481, 2009.  https://doi.org/10.1016/S0025-6196(11)60566-1.Google Scholar
  43. 43.
    Redheuil, A., W. C. Yu, E. Mousseaux, A. A. Harouni, N. Kachenoura, C. O. Wu, et al. Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J. Am. Coll. Cardiol. 58(12):1262–1270, 2011.  https://doi.org/10.1016/j.jacc.2011.06.012.Google Scholar
  44. 44.
    Robertson, A. M., A. Sequeira, and R. G. Owens. Rheological models for blood. In: Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, edited by L. Formaggia, A. Quarteroni, and A. Veneziani. Milano: Springer Milan, 2009, pp. 211–241.Google Scholar
  45. 45.
    Romo, A., P. Badel, A. Duprey, J. P. Favre, and S. Avril. In vitro analysis of localized aneurysm rupture. J. Biomech. 47(3):607–616, 2014.  https://doi.org/10.1016/j.jbiomech.2013.12.012.Google Scholar
  46. 46.
    Shang, E. K., D. P. Nathan, S. R. Sprinkle, R. M. Fairman, J. E. Bavaria, R. C. Gorman, et al. Impact of wall thickness and saccular geometry on the computational wall stress of descending thoracic aortic aneurysms. Circulation 128(11 Suppl 1):S157–S162, 2013.  https://doi.org/10.1161/CIRCULATIONAHA.112.000200.Google Scholar
  47. 47.
    Sigovan, M., M. D. Hope, P. Dyverfeldt, and D. Saloner. Comparison of four-dimensional flow parameters for quantification of flow eccentricity in the ascending aorta. J. Magn. Reson. Imaging 34(5):1226–1230, 2011.  https://doi.org/10.1002/jmri.22800.Google Scholar
  48. 48.
    Strecker, C., A. Harloff, W. Wallis, and M. Markl. Flow-sensitive 4D MRI of the thoracic aorta: comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T. J Magn Reson Imaging. J. Magn. Reson. Imaging 36(5):1097–1103, 2012.  https://doi.org/10.1002/jmri.23735.Google Scholar
  49. 49.
    Tezduyar, T. E., S. Sathe, T. Cragin, B. Nanna, B. S. Conklin, J. Pausewang, et al. Modelling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int. J. Numer. Methods 54(6–8):901–922, 2007.  https://doi.org/10.1002/fld.1443.MathSciNetzbMATHGoogle Scholar
  50. 50.
    Trabelsi, O., F. M. Davis, J. F. Rodriguez-Matas, A. Duprey, and S. Avril. Patient specific stress and rupture analysis of ascending thoracic aneurysms. J. Biomech. 48(10):1836–1843, 2015.  https://doi.org/10.1016/j.jbiomech.2015.04.035.Google Scholar
  51. 51.
    Trabelsi, O., A. Duprey, J. P. Favre, and S. Avril. Predictive models with patient specific material properties for the biomechanical behavior of ascending thoracic aneurysms. Ann. Biomed. Eng. 44(1):84–98, 2016.  https://doi.org/10.1007/s10439-015-1374-8.Google Scholar
  52. 52.
    Tromp, G., H. Kuivaniemi, I. Hinterseher, and D. J. Carey. Novel genetic mechanisms for aortic aneurysms. Curr. Atheroscler. Rep. 12(4):259–266, 2010.  https://doi.org/10.1007/s11883-010-0111-x.Google Scholar
  53. 53.
    Tse, K. M., P. Chiu, H. P. Lee, and P. Ho. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J. Biomech. 44(5):827–836, 2011.  https://doi.org/10.1016/j.jbiomech.2010.12.014.Google Scholar
  54. 54.
    Valen-Sendstad, K., and D. A. Steinman. Mind the gap: impact of computational fluid dynamics solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status indicators. AJNR Am. J. Neuroradiol. 35(3):536–543, 2014.  https://doi.org/10.3174/ajnr.A3793.Google Scholar
  55. 55.
    Vikrant, S., and S. C. Tiwari. Essential hypertension—pathogenesis and pathophysiology. J. Indian Acad. Clin. Med. 2:140–161, 2001.Google Scholar
  56. 56.
    Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40(9):1887–1902, 2007.  https://doi.org/10.1016/j.jbiomech.2006.09.003.Google Scholar
  57. 57.
    Vorp, D. A., B. J. Schiro, M. P. Ehrlich, T. S. Juvonen, M. A. Ergin, and B. P. Griffith. Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann. Thorac. Surg. 75(4):1210–1214, 2003.Google Scholar
  58. 58.
    Wagenseil, J. E. Bio-chemo-mechanics of thoracic aortic aneurysms. Curr. Opin. Biomed. Eng. 5:50–57, 2018.  https://doi.org/10.1016/j.cobme.2018.01.002.Google Scholar
  59. 59.
    Wilson, K. A., A. J. Lee, A. J. Lee, P. R. Hoskins, F. G. Fowkes, C. V. Ruckley, et al. The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysm. J. Vasc. Surg. 37(1):112–117, 2003.  https://doi.org/10.1067/mva.2003.40.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERMSaint-EtienneFrance
  2. 2.Centre Hospitalo-UniversitaireSaint-EtienneFrance
  3. 3.Univ Lyon, UJM-Saint-Etienne, INSA, CNRS, UMR 5520, INSERM U1206, CREATISSaint-EtienneFrance
  4. 4.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations